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Abstract

We present a strategic network formation model which is based on membership in clubs. Agents
choose a set of clubs with which they wish to be affiliated. The set of all club memberships
(an environment) induces a weighted network in which two agents are directly connected if they
are members of the same club. Two agents may also be indirectly connected using the multiple
memberships of third parties. Agents gain from their position in the induced network and pay
membership fees. Thus, both clubs and the network are formed simultaneously. Using two speci-
fications of the weighting function we introduce two models based upon congestion - one, the club
congestion model wherein the weight of each link depends upon the size of the smallest shared club
and the other, the individual congestion model wherein each link’s weight depends on the number
of affiliations maintained by the two agents. In the club congestion model we focus on the trade-off
between the size of the club, depreciation due to indirect connections and membership fees. In
the individual congestion model the Grand Club environment is the unique efficient environment.
However, a coordination failure arises due to the wide externalities incurred by the formation of
new affiliations. We believe that this framework may serve as a basis for an empirical examination
of the role of linking platforms in shaping real-life social networks.
Keywords: Strategic Formation of Clubs, Strategic Formation of Weighted Undirected Networks.
JEL Classification: D71, D85, Z13.

1 Introduction

Most of the initial social interactions between individuals occur within social circles, social
groups or social clubs.1 Clearly, some social connections can be formed randomly - like
meeting someone on the street - but most friendships and acquaintances are formed within
a social context like a family, school class, alumni organization, church, fraternity, academic
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1Sociologists refer to social contexts as social foci. Feld (1981) introduces a “focus theory” where he
defines social foci as “Social, psychological, legal, or physical entities around which joint activities are
organized.” For the sociological literature see, Simmel (1908/1955), Young and Larson (1965a,b), Kadushin
(1966, 2011), Feld (1981), Granovetter (1983), Blau and Schwartz (1984) and the survey on non-geographical
proximity by Rivera et al. (2010). See also the discussion on sub-neighborhoods in Jackson et al. (2012).
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department, research group, workplace, boy scouts, youth extracurricular activities, gym or
even at a bar that the individual regularly attends.2 That is, social links are typically formed
within social contexts rather than between individuals who do not share any common social
foci. Thus, when considering the formation of social networks, the social environment, par-
ticularly, the number and size of the different social clubs and the type of affiliations that
people maintain within these clubs also needs to be scrutinized.

Most sociologists view social clubs as preceding the formation of social networks, as stated in
Rivera et al. (2010, p. 106): “If networks are the fabric of inter-personal interaction, social
foci are the looms in which they are woven.” In some social clubs, membership is automatic
(e.g. family), but in most cases affiliation is by choice. People choose their gym, their univer-
sity, their place of worship, as well as other social clubs that they wish to belong to, taking
into account their existing club affiliations and the structure of their social network. Our
work focuses on the strategic choice of an affiliation portfolio along with the simultaneous
formation of club environments and social networks.3

Membership in a social club provides the benefit of being directly connected to other individ-
uals in the club. Multiple club affiliations facilitate indirect connections between individuals
who have no clubs in common. So, for example, an individual may have direct connections
to her high school class mates in addition to having an indirect connection to an individual
that attends a reading club together with one of her high school class mates.

Interaction in a small club is different than that in a large club. The “quality” of connection
between two individuals generated in a large club, tends to be lower than that generated by
a small club. In a small group, members are well acquainted and the flow of information
is more reliable. Intuitively, the probability of any pair of members interacting and real-
izing the potential benefit from their mutual affiliation decreases with the size of the club.
McPherson and Smith-Lovin (1982) show that the number of clubs with which an individual
is affiliated is not gender dependent. However, as men tend to belong to much larger clubs
than do women (see also Maccoby (1998)) gender differences in various aspects of social life
can be attributed either to the larger number of direct contacts formed by men or to the
higher quality of direct contacts cultivated by women.4

2Clearly direct benefits accrue from belonging to a club, like the positive health effects of training in a
gym or the religious public goods provided by institutions of worship. These benefits are the focus of the
well-established literature on club theory (see Tiebout (1956) and Buchanan (1965) for seminal contributions
and Sandler and Tschirhart (1997) and Scotchmer (2002) for detailed surveys). In this paper we abstract
from these benefits and focus on the role of clubs as platforms for the formation of social contacts.

3For sociological work that advocate for the simultaneous evolution of social networks and social foci see
Feld (1981) and McPherson et al. (2001). Snijders et al. (2006) and Chandrasekhar and Jackson (2017) intro-
duce stochastic non-strategic models of network formation that admit exogenously given clubs as platforms
for link formation.

4There is some concrete evidence for the role of participation in social clubs in future economic outcomes.
For example, Persico et al. (2004) find that participation in athletics clubs, social clubs and social activities
in adolescence accounts for about half of the teen height wage premium (see also Moody (2001)). However,
they are unable to point out “what precisely is acquired” in these clubs (p. 1050).

2



Since Granovetter (1973) the concept of “weak ties” has become central to the applied lit-
erature on social networks.5 There are two possible interpretations of “weak ties.” Two
individuals may be connected directly via a large club that is subject to heavy congestion
or through an interconnected sequence of small clubs. In real-life both types of weak ties
are observed and their relative importance depends upon the context. This paper highlights
the trade-off between the two types of weak links - indirect connections composed of “high
quality” links and direct “low quality” links.

We present a model where agents choose affiliations in social clubs. Two individuals who
share a club are linked in the induced social network. Each link is assigned a weight which
is a non-increasing function of the size of the smallest club shared by the two agents. The
weight of an indirect connection is the product of the weights associated with the links along
the path. We define the shortest path between two agents as the highest quality connection
between them. The benefits to an agent are the sum of the shortest paths to all other agents
net of the total club membership fees. A social environment is Open Clubwise Stable (OCS)
if no agent wants to leave or join a club and there is no subset of agents that are better off
by forming a new club together.6

Open Clubwise Stability can be viewed as an extension of the pairwise stability solution con-
cept posited by Jackson and Wolinsky (1996) to the club formation setup. Indeed, we show
that the connections model with the pairwise stability solution concept, is a special case of
our framework with open clubwise stability. That is, the connections model is equivalent
to a club formation model with the restriction that clubs consist of exactly two members.
Therefore, the setup of social clubs can be viewed as a generalization of the setup of social
networks where instead of a link that connects an individual to one other individual, affilia-
tion in a social club provides an individual with links to a group of individuals.

5Weak ties appear in two branches of the literature on networks in Economics. In the literature on the
role of networks in labor markets, weak ties are typically viewed as cheap, infrequently used direct links
that may relay useful job information (e.g. Boorman (1975), Montgomery (1992, 1994), Boxman and Flap
(2000), Calvó-Armengol and Zenou (2003) and Kramarz and Skans (2014)). Calvó-Armengol (2004) studies
job information transmission through indirect links but do not refer to those channels as weak ties. In the
literature on the formation of weighted networks (which is frequently motivated by Granovetter (1973)) the
weight is determined endogenously as some function of investments made by both end agents. A general
model is introduced in Bloch and Dutta (2009) and studied further by Deröıan (2009), So (2016), Salonen
(2015, 2016) and Baumann (2017). A similar approach is taken by Goyal (2005) and Goyal et al. (2008) to
study R&D cooperation, by Brueckner (2006) to develop a network formation model of friendship (see also
Currarini et al. (2009)) and by Rogers (2006) to explore giving and asking over networks. Another approach
is to model resource allocation as a subsequent stage to the formation of the network (e.g. Ballester et al.
(2006) and Cabrales et al. (2011)). Altogether, this literature also interprets weak ties as direct links (with
low weights) and does not refer to indirect connections as weak ties. For a survey of the recent sociological
literature on weak ties see Aral (2016).

6While we highlight clubs as platforms on which links form, other works concentrate on the role of the
coalition as a binding agreement that constrains player activities. Myerson (1980), Slikker and Van den
Nouweland (2001) and Arnold and Wooders (2005) study cooperative games with an exogenously given
collection of communication subsets of players (”conferences”). In Caulier et al. (2013a,b, 2015) a coalitional
network is a pair of an unweighted network and a partition. They introduce a solution concept where
deviations require the consent of the original coalitions with which the deviators are affiliated.
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When membership costs are sufficiently low, the environment wherein every pair of individ-
uals share a single club of size two is the unique stable environment as the complete network
is induced with high quality links. When membership costs are higher, this environment
is no longer sustainable and “weak ties” appear. We show that when congestion friction is
higher than depreciation friction a stable environment is one based on “weak ties” of the
indirect connections type. But, contrary to most of the existing literature on strategic net-
work formation, when depreciation is more significant than congestion, a stable environment
is one based on “weak ties” generated in large clubs. In particular, our model predicts that
complete networks can survive high membership costs if congestion is weaker than endoge-
nous depreciation.

The trade-off between congestion and indirect connections is further demonstrated by con-
sidering the following two special environments: m-complete and m-star. In m-complete
environments every pair of agents shares exactly one club that includes m members, and
therefore every pair of individuals is directly connected via a congested link (unless m = 2).
In m-star environments, one individual (the “star”) is affiliated with all the populated clubs,
the other agents (the “peripherals”) are members of a single club and all the populated clubs
are of size m. Therefore, in m-star environments, every peripheral agent is directly connected
to m−1 agents and indirectly connected to all the rest. We show that when membership fees
are low the efficient environment among the environments where all populated clubs are of
size m, is the m-complete environment. The m-star environment is efficient for intermediate
affiliation fees while the empty environment is efficient for sufficiently high membership costs.

We demonstrate that the stability of the various m-complete and m-star environments can
be characterized as a function of the elasticity of congestion relative to club size. There
is, however, non-monotonicity in the relationship between congestion and the size of clubs
in stable environments. For a substantial set of congestion functions, m-complete environ-
ments with intermediate size clubs are never stable while m-complete environments with
either small clubs (wherein each individual maintains many high quality affiliations) or large
clubs (wherein each individual maintains few low quality affiliations) are open clubwise stable.

A different, yet important, type of congestion is individual congestion. When individuals
belong to several clubs, time constraints or limited attention may reduce the effectiveness of
each affiliation. That is, the larger the set of affiliations an individual maintains, the lower
the quality of the links generated by these affiliations. Upon joining a club individuals pay
participation fees but it also decreases the attention that can be devoted to other affiliations.
To capture this effect we introduce a non-increasing function that assigns a value to affilia-
tion portfolios of every size. The weight of each link is the product of the values assigned to
the portfolio size of the end-agents. Clearly, in such a setting the Grand Club environment,
wherein all agents are members of the same club is the unique efficient environment. How-
ever, there are many inefficient stable environments that emerge due to a coordination failure.

In real-life, both individual and club congestion exist. We briefly study such a model. In
particular, we show that the co-authors model with the pairwise stability solution concept
(Jackson and Wolinsky (1996)), is a special case of our richer model with open clubwise
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stability.

In real-life a wide range of rules regarding the formation, the joining or the leaving of social
clubs are observed. For example, clubs may introduce entry barriers wherein acceptance by
incumbent members is required in order to join the club.7 Each set of rules induces a differ-
ent set of possible deviations and therefore corresponds to a different stability concept. This
clearly affects individual choices of clubs and consequently the stable environments. The so-
lution concept of open clubwise stability represents an open environment wherein individuals
are free to join or leave any club they wish (one at a time), and to form new clubs, as long as
they pay a fixed membership fee. To demonstrate the importance of club rules we introduce
the Closed Clubwise Stability (CCS) solution concept which is a strictly weaker concept
wherein joining a club requires the unanimous approval of all existing club members. We
demonstrate that these two concepts may lead to dramatically different stable environments.

Establishing social connections via clubs yields different types of social networks than those
formed in the regular framework of network formation. In particular, the club setting pro-
vides an alternative explanation for the extensive clustering that characterizes real-life social
networks. In most real-life networks the probability of two individuals being connected
if they are linked with a common individual is much higher than if the connections were
formed randomly (see Goyal (2007) and Jackson (2008)). Social science literature frequently
attributes the high clustering in social networks to one of two explanations: First, indi-
viduals may have a preference for connections with individuals with whom they share a
neighbor (preference for transitivity). Second, individuals may prefer to link to individuals
with whom they share social traits (homophily). We argue that simultaneous formation of
clubs and networks provides a third explanation for the high clustering observed in real-life
networks. This explanation is based on the mechanics of link formation rather than on
specific assumptions regarding preferences over links.

2 The Model

An environment is a group of agents and a set of clubs such that each agent is affiliated
with a subset of clubs. Formally, N = {1, ..., na} (na > 2) is a finite set of agents and
S = {1, ..., ns} is a finite set of clubs. The pair {i, s} denotes the affiliation of Agent i with
Club s and Ac ≡

{
{i, s} : i ∈ N, s ∈ S

}
is the set of all possible affiliations. An environment

is the triplet G ≡ < N,S,A > where A ⊆ Ac is a set of affiliations. We denote the set of

7Also, there can be some interdependence between choices of clubs, in particular when belonging to one
club may restrict entrance to other clubs (e.g. membership in a local antisemitic club probably restricts
membership in the neighborhood’s synagogue and vice versa).
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all the environments with n agents by Gn.8 We denote by SG(i) ≡ {s ∈ S|{i, s} ∈ A} the
set of clubs that Agent i is affiliated with in Environment G, and sG(i) ≡ |SG(i)| denotes
its cardinality. In addition, we denote by NG(s) ≡ {i ∈ N |{i, s} ∈ A} the set of agents that
are affiliated with Club s in Environment G, and nG(s) ≡ |NG(s)| denotes its cardinality.

The environment that results from adding (severing) {i, s} to (from) Environment G is
denoted by G+ {i, s} ≡< N,S,A ∪

{
{i, s}

}
> (similarly, G−{i, s} ≡< N,S,A\

{
{i, s}

}
>).

Let s ∈ S be a vacant club (we assume that such a club always exists) and let m ⊆ N . Then,
G+m ≡< N,S,A ∪

⋃
i∈m
{
{i, s}

}
> is the environment that emerges from Environment G

when the set m of agents populates the vacant club s.

Consider two environments G =< N,S,A > and G′ =< N ′, S ′, A′ >. If S ′ ⊆ S,
N ′ = ∪s∈S′NG(s) and A′ = {{i, s}|i ∈ N ′, s ∈ S ′, {i, s} ∈ A} then G′ is a sub environ-
ment of G and G is a super environment of G′. If, in addition, N ′ = N then G′ is a spanning
sub environment of G and G is a spanning super environment of G′.

Every Environment G induces an undirected network g whose nodes represent agents and
two agents are linked in g if they belong to the same club. We denote the weight of a link
between two agents i, i′ ∈ N in G by w(i, i′, G) ∈ [0, 1]. In this general setting the weight
can be a function of the whole environment. We detail the specifications of the weights
derived from club congestion and individual congestion in the upcoming analysis. Formally,
a weighted network is a triplet < N,E,W > wherein N is a set of agents, E a set of links and
W : E → [0, 1] the set of weights. The weighted network g =< N,EG,WG,w > is induced by
Environment G and weighting function w if EG ≡ {{i, j}|i ∈ N, j ∈ N,SG(i) ∩ SG(j) 6= ∅}
and ∀{i, j} ∈ EG : WG,w({i, j}) ≡ w(i, j, G). Note that each environment has another
induced undirected network whose nodes represent clubs and two clubs are linked if there is
an agent that affiliates with both. The club network should be the focus of an analysis of a
setting wherein the clubs are strategic.9

We assume that agents benefit from being connected, either directly or indirectly, to other
agents. Multiple affiliations facilitate indirect connections between individuals who have no
clubs in common. Indirect connection between a pair of agents occurs whenever a third party
shares a club with each of the two agents (see, for example, Faust (1997)). Formally, a path
of length l−1 between Agent i and Agent i′ in the induced network g is a sequence of agents
{x1, x2, . . . , xl−1, xl} such that x1 = i and xl = i′ and every consecutive pair of agents, xk
and xk+1, shares at least one club in G. Two agents who share at least one club are directly

8A graph G =< V,E > is called bipartite or two mode network if V admits a partition into two classes
(U ,V \U) such that ∀(v1, v2) ∈ E : v1 ∈ U, v2 ∈ V \U . An environment can be described as a bipartite graph
wherein one set of nodes is the set of agents and the other is the set of clubs. This representation is often
referred to as an affiliation network (e.g. Ch. 8 in Wasserman and Faust (1994), Newman (2001), Bonacich
et al. (2004), Latapy et al. (2008), Borgatti and Everett (2013) and Renoust et al. (2014)). An additional
way to represent an environment is by a hypergraph. A hypergraph is a pair H =< U,ME > wherein the
elements of ME are subsets of U . This representation is mainly used in Mathematical Graph Theory (see
Berge (1989)).

9Fershtman and Gandal (2011) take advantage of this duality to study the open source environment.
For a methodological sociological analysis see Bonacich (1972, 1978) and Breiger (1974).
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Induced
Network

Club
Network

Utilities

u1 = 3(a + δ) − 3c
∀i ∈ {2, 3, 4}:
if δ ≥ 1−a

2
:

ui = (a + δ) + 2(a + δ)2 − 2c
Otherwise:

ui = (a + δ) + 2(a + δ2) − 2c

1

2

3

4 1

2

3

4A

B

C

D C

A

D

B

a
+
δ

a + δ

a
+
δ

a
+
δ 2

a + δ2

a
+
δ
2

Club A: 1 2

Club B: 1 3

Club C: 1 4

Club D: 2 3 4

Figure 1: An environment, its induced weighted agent network, the induced club network and
the agents’ utilities. The weighting function assigns a weight of a + δ to links that
originate from a club of size two and a+ δ2 to links that originate from a club of size
three (δ ∈ (0, 1), a ∈ [0, 1) and a+ δ ∈ (0, 1)).

connected and two agents who do not share a club in Environment G are indirectly connected
if there is a path between them in g. If every pair of agents is connected (either directly or
indirectly) then g is connected; otherwise, it is disconnected. We say that Environment G
is connected if its induced network g is connected. The sub environment G′ =< N ′, S ′, A′ >
of G =< N,S,A > is a component of G if its induced network g′ is connected and there is
no pair of agents i ∈ N ′ and k ∈ N\N ′ who share a club in G. We denote the size of the
component G′ by n(G′) = |N ′|.

The weight of a path is the product of the weights on the links that constitute this path.
That is, let g =< N,E,W > be a weighted network. The weight of the path p = {x1, . . . , xl}
is WPg(p) =

∏l−1
k=1W ({xk, xk+1}).10 Path p is a shortest weighted path between agents i and

i′ if and only if there is no path p′ between agents i and i′ such that WPg(p
′) > WPg(p).

The distance between agents i and i′ in G using weighting function w, denoted d(i, i′|G,w),
is the weight of the shortest weighted path between them in the induced network g. If there
is no such path, d(i, i′|G,w) = 0.

Agents benefit from short distances to other agents. The utility of Agent i is given by

ui(G,w, c) =
∑

k∈N,k 6=i

d(i, k|G,w)− sG(i)× c where c is the fixed membership fees.

Figure 1 provides a simple example. The two leftmost cells describe an environment con-
taining four agents and four populated clubs wherein Agent 1 shares a club of size two with
each of the other three agents who, among themselves share an additional club of size three.
Therefore, the induced weighted network is the complete network depicted in the next cell.
The weights on the links are such that a club of size two provides a link of strength a + δ
while a club of size three provides a weaker link of strength a+ δ2 (δ ∈ (0, 1), a ∈ [0, 1) and
a+ δ ∈ (0, 1)). Finally, the utilities of the agents are documented in the rightmost column.
As this example demonstrates, the distance measure used in this model is different from the
geodesic distance (the length of the path with the minimal number of links) that is used in

10This definition resembles the definition of the reliability of a path in Bloch and Dutta (2009) (see also
Brueckner (2006)).
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most models of unweighted network formation since the shortest distance is not necessarily
the path that includes the least number of links.

Stability: Environment G is Open Clubwise Stable (henceforth, OCS) if no individual
strictly gains from leaving a club, no individual strictly gains from joining a club and there
is no subset of individuals who are all better off by forming a new club together. Formally,
the conditions for OCS are:

(i) No Leaving: ∀s ∈ S, ∀i ∈ NG(s) : ui(G,w, c) ≥ ui(G− {i, s}, w, c).

(ii) No New Club Formation: ∀m ⊆ N :
∃i ∈ m : ui(G+m,w, c) > ui(G,w, c)⇒ ∃j ∈ m : uj(G+m,w, c) < uj(G,w, c).

(iii) No Joining: ∀s ∈ S, ∀i /∈ NG(s) : ui(G,w, c) ≥ ui(G+ {i, s}, w, c).

Efficiency: Environment G is Pareto Efficient (henceforth, PE) if there is no other
environment G′ such that ∀i ∈ N : ui(G

′, w, c) ≥ ui(G,w, c) and ∃j ∈ N : uj(G
′, w, c) >

uj(G,w, c). Environment G is Strongly Efficient (henceforth, SE) if there is no other
environment G′ such that

∑
i∈N ui(G

′, w, c) >
∑

i∈N ui(G,w, c). Obviously, if Environment
G is strongly efficient, it is also Pareto efficient, but the opposite is not necessarily true.

The following environments are instrumental in characterizing stable and efficient environ-
ments in this setting.

(i) The Empty Environment: G = < N,S, ∅ > is the Empty environment.
(ii) The Grand Club: G is the Grand Club environment if there is exactly one populated
club and all the agents are affiliated with it.
(iii) The All Paired Environment: Environment G is the All Paired environment if every
pair of agents shares a unique club of size two.

3 Baseline Model: No Congestion

We start by considering the simple setting in which all weights are set to 1 (w(i, j, G) is
identically 1), implying that the distance between two agents is 1 if they are (either directly
or indirectly) connected and 0 otherwise.

When there are no membership fees, agents wish to maximize the number of other agents
with which they are connected, either directly or indirectly. In this case it is hardly surprising
that every connected environment is both stable and efficient.11

11For every connected environment G, ∀i ∈ N : ui = na − 1 which is the maximal attainable utility.
Therefore, G is OCS, SE and PE. On the other hand, if environment H is not connected, there is at least
one pair of individuals who have no path between them. By forming a club together, the benefit of both
increases and therefore, H is not OCS. In addition, since any other agent is not worse off by the formation
of such club, H is neither PE nor SE.
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Environment Induced Network Class (“Weakest Affiliation”)

K(G)=1
Individual 2 leaves Club A
Individual 4 leaves Club D

K(G)=2
Individual 3 leaves Club A
Individual 3 leaves Club B

K(G)=4
Every individual that

leaves Club A

1 2 3 4 5

1

2

3

4

5

1

2

3
4

5

Club A: 1 2

Club B: 2 3

Club C: 3 4

Club D: 4 5

Club A: 1 2 3

Club B: 3 4 5

Club A: 1 2 3

4 5

Figure 2: Three Minimally Connected environments of 5 agents, their induced networks and
their classes.

For the case of positive membership fees, we say that environment G is Minimally Con-
nected if it is connected and for every affiliation {i, s} ∈ A, the network induced by G−{i, s}
is disconnected.

Lemma 1. Let G be a Minimally Connected environment where Agent i is affiliated with
Club s. Then, G−{i, s} is a disconnected environment that contains exactly two components.

All the proofs are relegated to Appendix A. Lemma 1 shows that when a single affilia-
tion is removed from Minimally Connected environment G two components emerge - one
that contains Agent i, denoted Ci(G − {i, s}), and one that does not contain Agent i,
denoted C−i(G − {i, s}). In the setting with no congestion, the size of C−i(G − {i, s})
is the loss incurred by Agent i upon canceling the affiliation with Club s. We say that
the “weakest affiliation” in Environment G is the one whose absence leads to the smallest
C−i(G− {i, s}). We classify the minimally connected environments by their “weakest affili-
ation,” K(G) = min

{i,s}∈A
n(C−i(G− {i, s})). Figure 2 demonstrates this classification on some

minimally connected environments that contain 5 agents.

Proposition 1. Suppose that for every environment G and for every pair of agents i and j
who share a club in G, w(i, j, G) = 1. Then,

1. If na − 1 > c > 0:

(a) G is a Minimally Connected environment of class K(G) ≥ c if and only if G is
OCS.

(b) The Grand Club is the unique PE and SE environment.

2. If c > na − 1, the Empty environment is the unique OCS, PE and SE environment.

The intuition behind Proposition 1.1a is: First note that for na − 1 > c > 0 the Grand
Club Environment is OCS while the Empty Environment is not. Hence, if G is OCS and
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disconnected there must be a component H that contains na > h > 1 agents. Since the
maximal possible utility of an agent in H is (h− 1)− c and since G is OCS then c < h− 1.
But then it is beneficial for every agent who is not included in H to join any one of H’s clubs.
Therefore, if G is OCS then it is connected. But, if it is not minimally connected there is
an agent who may want to leave a club since leaving will not affect network connectivity
(i.e. the agent’s benefits). Finally, if the membership costs are higher than the value of the
“Weakest Affiliation” there will be agents who may wish to cancel one of their affiliations.12

4 The Club Congestion Model

The quality of the connections generated within a club may depend on the size of the club.
If club membership is high, the “quality” of the connection between any two members is
probably lower than the “quality” of the connection between any two members of a small
club. For example, consider the difference between belonging to a club of five individuals
who attended the same college together versus being a member of the club of the class of
‘87 at a high school with over two hundreds members (see also Feld (1981), McPherson
and Smith-Lovin (1982) and Rivera et al. (2010)). In this model we capture “quality” by
assuming that links are weighted and that the weight of each link depends upon the size of
the club shared by the agents. Furthermore, we assume that when agents share more than
one club, the weight of the link between them is determined by the congestion in the smallest
club that they share.13 Specifically,

The club congestion function is a non-increasing function h : {2, 3, . . . , na} → [0, 1].

Given club congestion function h, the weight of a link between two agents i, i′ ∈ N is
wh(i, i

′, G) = max
s∈SG(i)∩SG(j)

h(nG(s)).

Even without congestion the affiliations of one agent may affect the social network of other
agents. Unilateral actions such as leaving a club or joining a club may benefit or harm other
agents by creating new links (either direct or indirect) or by ”breaking” some of the shortest
paths. Incorporating congestion into the club formation setting introduces a new type of
externality whereby these unilateral actions may also affect the quality of some links. For
example, if Agent j joins a club with which Agent i is also affiliated, the quality of some links
that Agent i maintains may change - either by making some paths shorter or by reducing
the weight of some links due to stronger congestion. While this externality does not affect
an agent’s decision either to join or leave a club (Agent j in the example) it clearly affects
the social desirability of the new environment.

12Bar (2005) also considers a model of strategic formation that includes club structure. However, she
ignores any type of congestion and therefore her results are comparable to our Proposition 1 with some
minor differences. Similar approaches where taken by Jun and Kim (2009) and So et al. (2015). A different
approach, inspired by two-way flow model of Bala and Goyal (2000), was taken by Borgs et al. (2011) where
agents organize gatherings to which they set the invitees and for which they bear the costs.

13See, Breiger (1974) for a discussion on networks in which the weights depend on the number of clubs
that the agents share (see also Christakis et al. (2010)).
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While unilateral actions may have positive or negative externalities, the formation of a new
club can never hurt uninvolved agents. Hence, Lemma 2 implies that every environment such
that a subset of agents can improve by forming a new club, cannot be efficient and, hence,
there is a well-defined subset of the non-OCS environments that can never be efficient.

Lemma 2. If Environment G is Pareto Efficient then it satisfies the condition of “No New
Club Formation”.

Our analysis of club congestion begins by examining the simple case in which there are no
membership fees. If 1 > h(2) > h(3), the only OCS environments are the spanning super
environments of the All Paired Environment. These are also the only efficient (SE and PE)
environments.14 That is, in any efficient OCS environment every pair of agents must share
a club of size two. Therefore, the induced network is complete and the weights on the links
are the highest possible since club congestion is at its minimum.

We now turn to consider the club congestion model with positive membership fees. An agent
holds at most na−1 links in the induced network and this network includes at most na(na−1)

2

links. Since each link is determined by a single club - the smallest club the two agents share -
we can establish an upper bound to the number of affiliations per individual and the number
of populated clubs in an OCS environment assuming affiliations are costly.

Lemma 3. Suppose c > 0. If Environment G =< N,S,A > is OCS then:

1. ∀i ∈ N : sG(i) ≤ na − 1.

2. |{s ∈ S|nG(s) > 0}| ≤ na(na−1)
2

.

Note that the number of possible clubs in an environment with na agents is 2na − (na + 1).
Therefore, Lemma 3.2 implies that OCS environments in the club congestion model include
relatively few populated clubs (e.g. for 10 agents there are 1013 possible clubs, but an OCS
environment includes at most 45 populated clubs).15

The set of OCS environments in the club congestion model with positive membership fees
crucially depends on the properties of the congestion function. We therefore introduce two
forms of club congestion, Reciprocal Club Congestion and Exponential Club Congestion.
These will be useful in demonstrating some of the results in the upcoming analysis.

Reciprocal Club Congestion: Environment G is characterized by Reciprocal Club Con-
gestion if ∀m ≥ 2 : h(m) = 1

m−1
.

14Suppose Environment G is a spanning super environment of the All Paired Environment. Then ∀i ∈
N : ui = (na − 1) × h(2). This is the maximal utility that can be attained in this model. Therefore, G is
OCS, SE and PE. Next, suppose that Environment G is not a spanning super environment of the All Paired
Environment. Then there is at least one pair of agents (Agent i and Agent i′) who share no club of size 2.
By forming a club of size 2, their benefits will increase in at least h(2)−max{h(3), h2(2)} which is positive
since 1 > h(2) > h(3). Therefore, G is not OCS. By Lemma 2, G is not PE and therefore it is also not SE.

15Lemma 3 is true for every model in our framework where the weight of the link is determined by a single
club and the solution concept includes the condition of “No Leaving”. We use Lemma 3 in the Matlab code
package that accompanies this work (see Section 8).
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Exponential Club Congestion: Environment G is characterized by Exponential Club
Congestion if h(m) = a+ δm−1 where δ ∈ (0, 1), a ∈ [0, 1) and a+ δ ∈ (0, 1).

The Reciprocal Club Congestion function can be interpreted as one unit of attention that
agents in a club uniformly lavish upon the other club members. The Exponential Club
Congestion function is the sum of two components: The first, representing the role of the
club as an institution that connects agents is a constant denoted by a, and therefore depends
only on agents’ mutual affiliation16 and the second, that can be interpreted as the prospects
of a potential link materializing, is an exponential function that decreases with the size of
the club, δm−1 (δ ∈ (0, 1)).

When agents are affiliated with a club of size m they enjoy m − 1 direct links to other
club members. We define kh(m) as the Direct Club Value (henceforth, DCV) such that
kh(m) = (m− 1)×h(m). The size of club, m, has two effects on kh(m). While a bigger club
generates more direct connections, these links are of lower quality due to club congestion.

The reciprocal club congestion function is a special case of the two effects of club size on
the DCV cancelling each other out as kh(m) is equal to 1 independently of m. Intuitively,
for a club member, the direct value of a club is exactly the unit of attention collected from
other members. The DCV of the exponential congestion function depends on a and δ. When
a = 0, it can be shown that when δ < 1

2
the congestion effect is dominant and the DCV is

maximized when the club is small (m = 2), but when δ > 1
2

a higher value of δ implies that
the DCV is maximized by a larger value of m. When a > 0, the effect of the number of links
is reinforced since the aggregate benefit of a increases linearly with m.17

To demonstrate the role of the DCV consider the Empty Environment. The Empty Envi-
ronment always satisfies both the conditions of ”No Leaving” and ”No Joining”. Therefore,
the Empty Environment is OCS if and only if the condition of “No New Club Formation”
holds.18 Notice that the benefit of an agent from participating in the formation of a new
club of size m is exactly the DCV of this club, kh(m). Therefore, the Empty Environment
with na agents is OCS if and only if c ≥ max

m∈{2,...,na}
kh(m). Proposition B.1.1 in Appendix B.2

shows that if the congestion function is reciprocal, the Empty Environment is OCS if and
only if c ≥ 1. Proposition B.1.2 characterizes the conditions for the Empty Environment to
be OCS when the congestion function is exponential.

Lemma 4 below connects the strategic aspects captured by the DCV to the properties of the
club congestion function. We define the club-size elasticity of the club congestion function

h as ηh(m) ≡
h(m+1)−h(m)

h(m)
1
m

for every club size m where h(m) > 0 and ηh(m) ≡ 0 otherwise.

h(m) is non-negative and non-increasing and, therefore, ηh(m) ≤ 0. We say that h(m) is

16In the sociological context Moody and White (2003) refer to it as the ideational component of solidarity.
See also the discussion on trustworthiness in closed structures in Coleman (1988).

17Lemma B.1 in Appendix B.1 characterizes the club size that maximizes the DCV for various sets of
parameters of the exponential club congestion function.

18Hence by Lemma 2 if the Empty Environment is not OCS it is also inefficient.
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inelastic (elastic) if ∀m ∈ {2, . . . , na − 1} : ηh(m) > −1 (respectively, ηh(m) < −1).

Lemma 4. The club congestion function h(m) is inelastic (elastic) if and only if kh(m) is
strictly increasing (decreasing).

4.1 The Relationship with the Connections Model

Jackson and Wolinsky (1996) introduce the connections model in which the utility of Agent
i in the unweighted network g is

uJWi (g) =
∑
j 6=i

δdij − ni(g)× c

where dij is the geodesic distance between agents i and j, δ ∈ (0, 1) the depreciation factor,
c > 0 the direct connection cost and ni(g) the number of Agent i’s direct neighbors. Network
g is pairwise stable if no single agent gains by severing any of their links and no pair of
unlinked agents would wish to establish a link between themselves.

Denote by PS(δ, c, n) the set of pairwise stable networks in the connections model and denote
by OCS(c, n, h) the set of OCS environments in the club congestion model (with congestion
function h). For every unweighted network g =< N,E > the corresponding environment
Gg =< N,S,A > is such that for each link {i, j} ∈ E there exists a club sij ∈ S that includes
only agents i and j, and there are no other populated clubs (formally, S = ∪{i,j}∈E{sij} and
A = ∪{i,j}∈E

{
{i, sij}, {j, sij}

}
). Denote the set of all unweighted networks with n agents by

Gn and the set of all corresponding environments by GGn ⊆ Gn.

Proposition 2. The Connections model is a special case of the Club Congestion model.
Specifically, let the congestion function be h(2) = δ and ∀m > 2 : h(m) = 0.

1. g ∈ PS(δ, c, n) if and only if Gg ∈ OCS(c, n, h).

2. If G ∈ Gn\GGn then G /∈ OCS(c, n, h).

The concept of pairwise stability is closely related to OCS. Both solution concepts imply
that leaving a club of size two destroys the club and the formation of a new club of size two
is an acceptable deviation. However, OCS also allows for the formation of bigger clubs, for
leaving bigger clubs without destroying them and for deviations in which an individual can
join an existing club. Naturally, when the discussion is limited to clubs of size two, the two
concepts coincide. Letting h(2) = δ and h(m) = 0 for every m > 2 implies that there is no
OCS environment with clubs of size larger than 2.
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Figure 3: Three m-Complete environments, their induced weighted networks (weighted by the
exponential club congestion function), induced club networks and the agents’ utilities.

4.2 Two Useful Clubs Architectures

4.2.1 The m-Complete Environment

In m-Complete environments every pair of agents shares exactly one club and all the popu-
lated clubs are of the same size, m.19 Formally,

m-Complete: G is an m-Complete Environment (m ∈ N, na ≥ m ≥ 2) if:

∀i, i′ ∈ N : |SG(i) ∩ SG(i′)| = 1.

∀s ∈ S : nG(s) = m or nG(s) = 0.

Figure 3 provides three examples of m-complete environments. First note that every m-
complete environment induces a complete weighted network. The first example in Figure
3 exhibits the All Paired Environment. Compared to other m-complete environments, the
links are stronger but an agent needs to join more clubs in order to be connected to all the
other agents. To demonstrate this trade-off consider the case of the 3-Complete Environment

19Given na and m, a necessary condition for the existence of an m-Complete environment is that na−1
m−1

and na(na−1)
m(m−1) are integers. Here we discuss only cases in which m-Complete environments exist (See Arnold

and Wooders (2005) and Page and Wooders (2007) for the important role of “leftovers” when agents are
farsighted). As a combinatorial object an m-Complete Environment with na agents is the “Steiner System”
S(t,m, na) where t = 2.
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Figure 4: Two m-Star environments, their induced weighted networks (weighted by the expo-
nential club congestion function), the induced club network and the agents’ utilities.

with seven agents. In this environment each agent is a member of three clubs while in the
All Paired Environment with na = 7 each agent pays for six memberships. At the same time,
the links in the network induced by the All Paired Environment are stronger than those in
the network induced by the 3-Complete Environment. The third example demonstrates that
the Grand Club Environment is an m-complete environment where m = na.

Another important observation is that in m-complete environments indirect connections are
never the shortest paths since every pair of agents is connected by a direct link and all links
are identically weighted. While most of the other environments contain frictions due both to
congestion and indirect connections, m-complete environments are free of the friction caused
by indirect connections.

4.2.2 The m-Star Environment

In the literature on the strategic formation of social networks the star network often emerges
as both stable and efficient for medium levels of linking costs. The star structure has one
agent who has connections with all the other agents while these agents have no additional
connections. We generalize this topology by defining the m-Star Environment, where the size
of the clubs is m ≥ 2, one agent is a member of all clubs and all other agents are members
of a single club.20 Formally,

m-Star: G is an m-Star Environment (m ∈ N, na ≥ m ≥ 2) if:

∀s ∈ S : nG(s) = m or nG(s) = 0.

20Given na and m, a necessary and sufficient condition for the existence of an m-star environment is that
na−1
m−1 is an integer. We only discuss cases in which m-Star environments exist. In the graph theory literature
the unweighted networks induced by m-Star Environments are called Windmill Graphs. In addition, these
networks are specific cases of the m− 1-quilts introduced by Jackson et al. (2012).
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∃i ∈ N such that ∀s′, s′′ ∈ {s|nG(s) > 0} : NG(s′) ∩NG(s′′) = {i}.

∀j ∈ N\{i} : sG(j) = 1.

Two m-Star environments are demonstrated in Figure 4. In 2-Star environments there is
one agent who is a member of na−1 clubs of size two with all the other agents and therefore
provides all the connectivity in the induced network. Each club, in this example, induces a
weight of a + δ and the distance between each pair of these na − 1 agents is (a + δ)2. Note
that 2-Star environments are congestion free.

In the 3-Star Environment, all clubs are of size three and all include one special agent. Com-
pared to the 2-Star Environment the central agent in the 3-Star Environment pays lower
membership fees but suffers greater congestion. The larger m, the more direct connections
peripheral agents have but the lower the quality of these connections, both direct and indi-
rect. Thus, while agents in m-Complete environments suffer only from congestion and agents
in 2-Star environments suffer only from depreciation caused by their indirect connections,
agents in m-Star environments generally suffer from both types of friction. Note that the
Grand Club Environment is an m-Star environment wherein m = na and therefore contains
no depreciation friction.

4.3 Efficiency

In many standard homogeneous models of strategic network formation (e.g. the connections
model of Jackson and Wolinsky (1996)), strongly efficient topologies are the complete network
for low linking costs, the star network for medium linking costs and the empty network for
high linking costs. These results reflect the benefits of direct linking and the role of short
indirect connections as a substitute for direct connections when linking costs are substantial.

Proposition 3 demonstrates that a similar intuition pertains in the Club Congestion Model
with respect to constant levels of congestion. In order to control for the level of congestion
friction we consider the set of m-Uniform environments in which all populated clubs are of
size m. That is, G is an m-Uniform Environment (m ∈ {2, . . . , na}) if ∀s ∈ S : nG(s) =
m or nG(s) = 0. Denote the set of all m-Uniform environments with n agents by Gmn and
denote the set of all uniform environments with n agents by Galln = ∪nak=2Gkn. Proposition
3 implies that among all uniform environments the strongly efficient ones are either m-
Complete, m-Star, or empty.

Proposition 3. Let m ∈ {2, . . . , na}. For every club congestion function h(·) and m-
Uniform Environment G′ ∈ Gmn :

1. Let c ∈ [0, (m− 1)(h(m)− h2(m))] and let G be an m-Complete Environment. Then,∑na
i=1 ui(G,wh, c) ≥

∑na
i=1 ui(G

′, wh, c).

2. Let c ∈ [(m − 1)[h(m) − h2(m)], (m − 1)h(m) + (na−m)(m−1)
m

h2(m)] and let G be an
m-Star Environment. Then,

∑na
i=1 ui(G,wh, c) ≥

∑na
i=1 ui(G

′, wh, c).

3. Let c ≥ (m− 1)h(m) + (na−m)(m−1)
m

h2(m) and let G be the Empty Environment. Then,∑na
i=1 ui(G,wh, c) ≥

∑na
i=1 ui(G

′, wh, c).
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Proposition 3 considers the set of environments in which all clubs are of size m. When
membership fees are low, the m-Complete environments are efficient. Since m-Complete
environments are symmetric across agents, the upper bound is independent of na and repre-
sents the agents’ preference for costly direct links ((m− 1)h(m)− c) over free indirect links
((m − 1)h2(m)). When membership fees increase, the importance of short indirect connec-
tions relative to costly direct connections and the low quality of long indirect connections
emerges. The architecture of m-Star environments implements these preferences since the
direct connections of the central agent keep the environment connected while making all
other connections as short as possible. While the lower bound is independent of na, the
upper bound increases with na since the larger the environment, the larger the return for
membership for everyone except the central agent.

The proof is inspired by the proof of Proposition 1 in Jackson and Wolinsky (1996). We first
show that when c ≤ (m− 1)(h(m)− h2(m)), the m-Complete Environment achieves maxi-

mal total utility among all connected m-Uniform environments with no more than na(na−1)
m(m−1)

clubs due to the high quality of the direct connections. This result also holds when the
m-Complete Environment is compared to large connected m-Uniform environments (since
additional clubs are redundant) and to disconnected m-Uniform environments (since the to-
tal utility of the m-Complete Environment is convex in na). A result on hypergraphs from
Berge (1989) is adopted to show that m-Star environments minimize the number of clubs re-
quired for an m-Uniform Environment to be connected. When c ≥ (m− 1)(h(m)− h2(m)),
the m-Star Environment achieves the maximal total utility among all connected m-Uniform
environments due to the high quality of the indirect connections and the low total partici-
pation fees. This result also holds when the m-Star Environment is compared to non-empty
disconnected m-Uniform environments since the union of two stars has a higher total utility
than the sum of the totals of the two stars (due to additional indirect connections). The

third part results from the fact that when c > (m − 1)h(m) + (na−m)(m−1)
m

h2(m), the total
utility of the m-Star Environment is negative.

The comparison of efficient uniform environments across club sizes depends on the specific
congestion function. However, two implications can be drawn from Proposition 3. One is
that when membership fees are below minm∈{2,...,na}(m−1)(h(m)−h2(m)), the environment
that achieves the maximal total utility among all uniform environments must be an m-
Complete Environment. The other is that since the maximal DCV across club sizes is
greater than maxm∈{2,...,na}(m− 1)(h(m)− h2(m)), among all uniform environments only an
m-Star Environment or the Empty Environment may achieve maximal total utility when the
membership fees are higher than the maximal DCV across club sizes.

4.4 The Stability of m-Complete Environments

The m-complete environment is OCS only when membership fees are neither too high nor
too low. Low membership fees are an incentive to form new small clubs (if m > 2) while
high membership fees are an incentive to leave one of the clubs, replacing direct connections
with indirect ones. Note that in the m-Complete environment, the ”No Joining” condition
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is irrelevant since if an agent joins an existing club, that agent pays membership fees but
creates no new (or better) connections.

Proposition 4. Denote by k̂ the club size that maximizes the DCV.
Let m ∈ N, na > m ≥ 2. An m-Complete Environment is OCS if and only if

c ∈
[

max
k∈{2,...,min{m−1,k̂}}

(k − 1)[h(k)− h(m)], (m− 1)[h(m)− h2(m)]
]

Let m = na. The m-Complete Environment (the Grand Club Environment) is OCS if and
only if

c ∈
[

max
k∈{2,...,min{na−1,k̂}}

(k − 1)[h(k)− h(na)], (na − 1)h(na)
]
.

In m-Complete environments, forming new clubs of size smaller than m may reduce conges-
tion. Hence, the lower bound of both parts of Proposition 4 implies that in order for an
m-Complete Environment to be OCS, membership fees should be high enough to preclude
new clubs from being formed. The benefit of a coalitional deviation to a club of size k < m is
its DCV ((k− 1)h(k)) net the value of these links in the original environment ((k− 1)h(m)).
The DCV applies here since indirect connections never constitute the shortest path for new
club formation deviations in m-Complete environments. Note that the larger the new club,
the larger the number of original links whose value has been lost. Hence, deviation to clubs
with more than k̂ members is less attractive than deviation to clubs of size k̂ because of the
lower DCV and the greater loss of original value.

An agent with multiple memberships in an m-Complete environment (na > m) may consider
leaving a club to trade-off reduced membership payments with replacing some direct con-
nections with indirect ones. The first case of Proposition 4 guarantees that membership fees
will not be high enough to make such trade-offs worthwhile. The second case relates to the
Grand Club Environment wherein an agent who has left the club will not be compensated
by indirect connections to the other agents.

The existence of a stable m-Complete environment is not guaranteed. It is possible that the
lower bound may be higher than the upper bound. Claim 1 uses the exponential club con-
gestion function with strong congestion (low δ) to demonstrate that even then m-Complete
environments with large clubs may be OCS.

Claim 1. Let h(·) be an exponential club congestion function where δ ∈ (0, 1
2
) and a > 0.

There exist two integers m̄ ≤ m̃ such that, ∀m : na > m > m̄ there exists a range of
membership fees in which an m-complete environment is OCS. Moreover, there exists a
range of membership fees in which every m-complete environment where n > m > m̃ is
OCS.

When congestion is strong, but there exists a non-congested part to the club congestion
function, if the clubs are large enough (m > m̄) the existence of membership fees for which an
m-Complete environment is OCS is guaranteed. The second part of Claim 1 shows that there
even exists a range of membership fees for which multiple m-Complete environments are OCS
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(all those with m > m̃). This result implies non-monotonicity in the relationship between
congestion and the size of clubs in stable environments: m-complete environments with
intermediate size clubs are unstable while m-complete environments with either small clubs
(wherein each individual maintains many high quality affiliations) or large clubs (wherein
each individual maintains few low quality affiliations) are open clubwise stable.21

Two extreme cases are of special interest - the All Paired and the Grand Club environments.
The stability of these environments depends on the relative importance of the two frictions
- club congestion and affiliation fees - that obtain in m-complete environments.

4.4.1 The Stability of the All Paired Environment

In the All Paired Environment the agents suffer no congestion and no depreciation. When
membership costs are introduced the strict super environments of the All Paired are no longer
OCS since redundancy is costly. In the All Paired Environment, joining an existing club or
forming a new one never constitutes a beneficial deviation since the additional affiliations
are costly and agents already share small clubs with every other agent. Therefore, only
incentives to leave a club and use an indirect connection instead need to be examined. As
long as the gain from staying in the club (h(2) − c) is greater than an indirect connection
(h2(2)), the All Paired environment is OCS.

A similar argument guarantees that no sub-environment of the All Paired Environment is
OCS when h(2) − c > h2(2). This argument, however, does not rule out the stability of
environments wherein the smallest club shared by some pair of agents is larger than size 2.
Such environments are not OCS if the costs of forming a new club are lower than the benefit
derived from eliminating the club congestion suffered by this pair, that is, when h(2)−h(3) >
c. Therefore, the uniqueness of the All Paired Environment is guaranteed when membership
costs are small enough to allow agents to form new two-agent clubs in order to resolve the
friction created by indirect connections and the friction of club congestion. Formally, the All
Paired Environment is the unique OCS environment when c ∈ (0,min{h(2) − h2(2), h(2) −
h(3)}). In fact, in this range of affiliation fees, the All Paired Environment is also the unique
PE and SE.22

4.4.2 The Stability of the Grand Club Environment

In the Grand Club Environment agents suffer severe club congestion but no depreciation fric-
tion and minimal membership fees. Proposition 1 states that when there is no club congestion
and na−1 > c > 0 the Grand Club Environment is both OCS and the unique efficient environ-
ment. But as Proposition 4 implies, when club congestion is introduced, the Grand Club en-

21Consider the case where h(m) = 1
32 + ( 1

4 )m−1. The All Paired Environment is OCS in [0, 3
16 ], for

m ∈ {3, . . . , 9} the m-complete is never OCS and for m ≥ 10 every m-complete is OCS in [0.25,0.27].
22When c ∈ (0,min

{
h(2) − h2(2), h(2) − h(3)

}
) every environment that is not a strictly spanning super

environment of the All Paired Environment is Pareto dominated by an environment that is a strictly spanning
super environment of the All Paired Environment (by adding the missing clubs of size 2). In addition, since
c > 0, every strictly spanning super environment of the All Paired Environment is Pareto dominated by the
All Paired Environment due to redundancies.
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vironment is OCS if and only if c ∈
[

max
k∈{2,...,min{na−1,k̂}}

(k − 1)[h(k)− h(na)], (na − 1)h(na)
]
.

Since the DCV of the reciprocal club congestion function is unity, the most attractive devi-
ation from the Grand Club Environment is to a club of size 2 (wherein the loss of original
value is minimal). Therefore, when club congestion is reciprocal, the Grand Club Environ-
ment is OCS if and only if c ∈ [1 − 1

na−1
, 1]. Hence, when the club congestion function is

reciprocal a range of membership fees in which the Grand Club environment is OCS always
exists.

Generally, as mentioned above, Proposition 4 does not guarantee that such a range exists.
Nevertheless, Lemma 4 is used to demonstrates that when club congestion is not too sensitive
to club size, the Grand Club Environment is OCS for some range of membership fees.

Claim 2. If the club congestion function is inelastic, a range of membership fees in which
the Grand Club Environment is OCS exists.

When the club congestion function is exponential, Claim 2 guarantees that the Grand Club
Environment is OCS for some range of membership fees in some cases (e.g. when a = 0 and
δ > 1− 1

na
). The case of δ ∈ (0, 1

2
) wherein the congestion component of the club congestion

function is substantial is analyzed in Claim 3 (note that the Grand Club Environment is not
covered by Claim 1).

Claim 3. Let na ≥ 4 and h(·) be an exponential club congestion function where δ ∈ (0, 1
2
).

For a = 0 there is no range of membership fees in which the Grand Club environment is
OCS. But if a > 0, there exists an n̄a such that ∀na : na > n̄a, a range of membership fees
in which the Grand Club environment is OCS exists.

The first part demonstrates that when there is no non-congested component, the congestion
is too strong for a Grand Club environment to be OCS. However, as long as there is a
non-congested component, the Grand Club environment can be OCS for some range of
membership fees, as long as the set of agents is large enough to make the non-congested part
important (see also Appendices B.1 and C.2). A sociological interpretation of this result
may imply that social solidarity (which does not depend on club size) may be useful in
maintaining big clubs even when club congestion is strong.

4.5 The Stability of m-Star Environments

An m-Star environment is OCS if no agent wishes to join or leave an existing club and no
subset of agents benefits from forming a new club.

The central agent prefers to leave a club when membership costs are higher than the benefit
derived from direct links to the agents in the club. A peripheral agent wishes to leave a club
when participation fees are higher than the benefit of direct links to other club members
and indirect connections to all other peripheral agents. Therefore, the peripheral agents’
incentives to leave a club are weaker than those of the central agent. Thus, the upper bound
on the range of membership fees in which an m-Star environment is OCS depends on the
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central agent’s incentives. Since by leaving a club, the central agent disconnects from the
other members of the club, the upper bound is higher than in m-Complete environments
(when m < na) where direct links that have been lost can be replaced by indirect connections.

Joining an existing populated club is not a relevant consideration for the central agent since
this agent is already a member of all populated clubs. When joining an existing club, a
peripheral agent replaces m − 1 indirect connections with direct connections that are both
congested (relative to existing direct connections) and costly. Thus, the lower bound on the
range of membership fees in which an m-Star environment is OCS should be high enough
to make the existing indirect connections to be more attractive than new direct connections
for a peripheral agent.

The third consideration is the formation of a new club. In forming a new club, a peripheral
agent always gains more than the central agent. If the new club is smaller than m, the
central agent only gains from improved direct connections while the peripheral agents also
gain from better indirect connections. When the new club is weakly larger than m, the
central agent gains nothing while the peripheral agents may gain from the new direct links
created. Therefore, the lower bound on the range of membership fees for which an m-Star
environment is OCS should be high enough to deter the formation of clubs that include only
peripheral agents.

A peripheral agent always prefers to form a new club with members of other clubs. If the
new club is of size k < m, sharing it with an agent who is also affiliated with the original
club yields a single improved direct connection (h(k) − h(m)) while forming the new club
with an agent who belongs to a different original club turns an indirect connection into a
direct one (h(k)−h2(m)) (and it may also have a positive effect upon indirect connections).
If the new club is not smaller than m, then, sharing this new club with an agent who is also
affiliated with the original club yields nothing while forming a new club with an agent who
belongs to a different original club may improve one indirect connection. Moreover, when
the new club is small, its attractiveness increases with the number of original clubs that
are represented in the new club. Hence, the lower bound on the range of membership fees
in which an m-Star environment is OCS should be high enough to deter peripheral agents
from coordinating the formation of a new club that includes a diverse collection of members
relative to the original clubs. Proposition 5 summarizes these incentives.

Proposition 5. Let na > m ≥ 2 and let h(·) be the club congestion function. Denote
γ ≡ na−1

m−1
, ηk ≡ dkγ e and lh = min{k ∈ Z|h(k) ≤ h2(m)}.

1. If γ ≥ m the m-Star environment is OCS if and only if

kh(m) ≥ c ≥ max{ max
m≥k≥2

FNSh(k,m), max
min{lh,na}>k>m

FNLh(k,m, na)}

where

FNSh(k,m) = (k − 1)[h(k) + (m− 2)h(k)h(m)− (m− 1)h2(m)]

FNLh(k,m, na) = (k − ηk)(h(k)− h2(m))
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2. If γ < m the m-Star environment is OCS if and only if23

kh(m) ≥ c ≥ max{Jh(m), max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m, na),

max
min{lh,na}>k>m

FNLh(k,m, na)}

where

FNIh(k,m, na) = (k − 1)h(k)− (ηk − 1)h(m)+

(na −m− (k − ηk))h(m)h(k)− (na −m)h2(m)

Jh(m) = (m− 1)[h(m+ 1)− h2(m)]

4.5.1 The Stability of a 2-Star Environment

Proposition 5 implies that a 2-Star Environment is OCS if the membership fees are high
enough to preclude any subset of peripheral agents from founding a new club that does not
include the central agent and low enough that it is beneficial for the central agent to maintain
each affiliation. Claim 4 summarizes the conditions for stability for a 2-Star Environment
for various characteristics of the club congestion function:

Claim 4. Denote lh = min{k ∈ Z|h(k) ≤ h2(2)}.

1. Let h(·) be the club congestion function. The 2-Star Environment is OCS if and only
if h(2) ≥ c ≥ max

k∈{2,...,min{lh−1,na−1}}
(k − 1)(h(k)− h2(2)).

2. Let h(·) be an elastic club congestion function. The 2-Star Environment is OCS if and
only if h(2) ≥ c ≥ h(2)− h2(2).

3. Let h(·) be the reciprocal club congestion function. The 2-Star Environment is OCS if
and only if c ∈ [0, 1].

4. Let h(·) be the exponential club congestion function. The 2-Star Environment is OCS
if and only if

a+ δ ≥ c ≥ max
k∈{2,...,min{lh−1,na−1}}

(k − 1)((a+ δk−1)− (a+ δ)2)

In particular, if a = 0, then the 2-Star Environment is OCS if and only if c ∈ [δ−δ2, δ].

Agents in a 2-Star Environment suffer no congestion. Therefore, indirect paths in the 2-Star
Environment can only be improved by direct links. By forming a new club of size k that does
not include the central agent, peripheral agents only gain from direct links to other deviators,
(k−1)(h(k)−h2(2)). The second part shows that when the club congestion function is elastic

23If m(m−1)
na−1 < 2 then FNIh(m,m, na) ≥ Jh(m). Thus, in this case Jh(m) is not the maximizing element

of the lower bound.
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Figure 5: A graphical representation of Corollary 1.

there is always a range of membership fees wherein the 2-Star Environment is OCS.24 The
third and the fourth parts characterize the stability of the 2-Star Environment in cases of
reciprocal and exponential club congestion functions, respectively.

4.5.2 The Emergence of Weak Links

We are now ready to demonstrate the effects of club congestion and depreciation in indirect
connections on the structure of stable environments. As previously discussed, as long as
membership fees are low enough, each agent is able to avoid both congestion and depreciation
by forming intimate clubs with all other agents. However, once membership fees become too
high for agents to maintain so many clubs, weak links emerge as low quality substitutes.

Corollary 1. Let na > 3 and let 1 > h(2) > h(3) ≥ 0.15.25

1. If h(3) < h2(2) then

(a) The All-Paired Environment is the unique OCS Environment if and only if c ∈
(0, h(2)− h2(2)).

(b) For c ∈ (h(2) − h2(2), h(2) − h(3)) the 2-Star Environment is OCS while the
All-Paired and the 3-Complete Environments are not.

2. If h(3) = h2(2) then

(a) The All-Paired Environment is the unique OCS environment if and only if c ∈
(0, h(2)− h2(2)).

24Generally, the existence of such a range is not guaranteed. Consider, for example, the case where
h(2) = 0.3, h(3) = 0.25 and na ≥ 4. In this case, the central agent would abort her affiliations for every
membership fee above 0.3. However, a triad of peripheral agents will form a new club if the membership
fees are lower than 0.32. Thus, if h(2) = 0.3, h(3) = 0.25 and na ≥ 4, the 2-star Environment is never OCS.

25The lower bound on h(3) is necessary because for very small values of h(3) the 3-Complete Environment
may not be OCS even if h(3) ≥ h2(2). However, the lower bound on h(3) stated in Corollary 1 is not tight.

The exact condition required for the third part of Corollary 1 is h(3) > max{h2(2), 3
4 [1−

√
1− 8h(2)

9 ]}.
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(b) For c ∈ (h(2)− h2(2), 2(h(3) − h2(3))) the 2-Star and the 3-Complete environ-
ments are OCS while the All-Paired Environment is not.

(c) For c ∈ (2(h(3) − h2(3)), h(2)) the 2-Star Environment is OCS while the 3-
Complete and the All-Paired Environments are not.

3. If h(3) > h2(2) then

(a) The All-Paired Environment is the unique OCS environment if and only if c ∈
(0, h(2)− h(3)).

(b) For c ∈ [h(2)−h(3), h(2)−h2(2)) the All-Paired and the 3-Complete Environments
are OCS while the 2-Star Environment is not.

(c) For c ∈ (h(2)− h2(2), 2(h(3)−h2(3))] the 3-Complete Environment is OCS while
the All-Paired Environment is not.

Two interpretations of weak links are suggested by Corollary 1. First, when congestion is the
stronger friction (h(3) < h2(2)), once the All-Paired Environment ceases to be stable, the 2-
Star Environment becomes OCS while the 3-Complete Environment is not OCS. Indeed, as in
the standard literature on strategic network formation, costless indirect links emerge as low
quality substitutes for costly direct connections (e.g. Jackson and Wolinsky (1996)). Hence,
when congestion is more substantial than depreciation, weak ties are indirect (not congested)
links. However, when depreciation is the stronger friction (h(3) > h2(2)), and membership
fees become high, the 3-Complete Environment, rather than the 2-Star Environment emerges
as OCS (for some membership fees both the All-Paired and the 3-Complete environment are
OCS). Thus, Corollary 1 suggests a new insight - larger clubs, that induce low quality direct
connections at low cost (per link) turn out to be substitutes for costly intimate connections.
Hence, when congestion is less substantial than depreciation, weak ties are direct congested
links.

One important implication of this concerns the architecture of the induced social network.
Most of the literature predicts that the complete network cannot survive non-negligible
maintenance costs. In these cases, according to the literature, the frugal star architecture
emerges as an equilibrium that efficiently maintains connectivity at much lower costs. By
incorporating club formation into the setup of strategic network formation, we show that
this prediction holds only if congestion is the predominant friction in the formation process
(as implicitly assumed by most existing models). When depreciation is stronger we show
that complete networks may survive high maintenance costs by reducing the quality of the
links.

The second part of Corollary 1 shows that when the frictions are of the same magnitude
(h(3) = h2(2)), both 3-Complete and 2-Star environments are OCS once membership fees
are too high for the ideal All-Paired Environment to be OCS. Note, however, that the 2-Star
Environment is a Minimally Connected Environment while the 3-Complete Environment is
not. As a result, the marginal utility of each affiliation in the 2-Star Environment is higher
than that of the 3-Complete Environment. Therefore, the range of costs wherein the 2-Star
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Environment is OCS is larger than that wherein the 3-Complete Environment is OCS.

As was previously discussed, the All-Paired Environment is the SE environment for c ∈
(0,min

{
h(2) − h2(2), h(2) − h(3)

}
). When congestion is the stronger friction, once the

membership fees become too high (c > h(2) − h2(2)) the 2-Star Environment is socially
preferred to the All-Paired and the 3-Complete environments.26 In fact, this is still the case
when depreciation is the stronger friction (h(3) > h2(2)) but congestion is still considerable
(e.g. when h(2) − h(3) > h(3) − h2(2) and na is large). Only when depreciation is the
stronger friction and congestion is less of an issue - does the 3-Complete Environment achieve
higher total utility than both the All-Paired and the 2-Star environments for some range of
membership fees. It should be noted that generally the social attractiveness of the 2-Star
Environment compared to that of the 3-Complete Environment grows with the number of
agents since the number of clubs (and therefore membership payments) grows linearly in the
former while in the latter it grows quadratically.

4.5.3 Other m-Star Environments

m-Star environments where m > 2 are hybrids of the architectures previously discussed.
Unlike in m-Complete environments, agents in m-Star environments do suffer depreciation.
Unlike the 2-Star Environment, m-Star environments where m > 2 include some congestion
friction.

Claim 5. Let na ≥ 9.

1. Let h(·) be the reciprocal club congestion function. The 3-Star Environment is OCS if
and only if c = 1.

2. Let h(·) be the exponential club congestion function with a = 0. The 3-Star Environ-
ment is OCS if and only if c ∈ [δ + δ3 − 2δ4, 2δ2]. This range exists if and only if
δ ≥ 1

2
.

Claim 5 shows that when the club congestion function is reciprocal then the 3-Star Envi-
ronment is OCS only when c = 1. Note that the reciprocal club congestion function at this
level of membership fees exhibits extensive multiplicity of equilibria including the Empty
Environment (Proposition B.1.1), the Grand Club Environment (see the discussion preced-
ing Claim 2) and the 2-Star Environment (Claim 4.3).

When the club congestion function is exponential with a = 0, we prove that the most
attractive new club is one formed by two peripheral agents that do not share a club in the
3-Star Environment. This club provides these agents with a direct link between themselves
and an improved indirect link to non-central agent affiliated with their partner in the original

26The total utility in the All-Paired Environment is na(na − 1)(h(2) − c). The total utility in the 3-

Complete Environment is na(na−1)
2 (2h(3)− c). The total utility in the 2-Star Environment is (na−1)(h(2)−

c)+(na−1)(h(2)+(na−2)h2(2)−c). The All-paired Environment dominates the 2-Star Environment if and
only if c < h(2)− h2(2) and the 3-Complete Environment if and only if c < 2(h(2)− h(3)). The 3-Complete
Environment dominates the 2-Star Environment if and only if c < 2na−4

na−4 (h(3)− h2(2))− 4
na−4 (h(2)− h(3))

that approaches 2(h(3)− h2(2)) from above when na grows larger.
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environment. If congestion friction is strong then the 3-Star Environment is never OCS. On
the one hand, strong congestion leads to small benefits accruing to the central agent from
each affiliation. On the other hand, due to congestion the benefit of forming a new small club
is relatively high. When congestion is weakened (δ increases) the incentive for the central
agent to leave a club weakens since membership in the club becomes more profitable. In
addition, peripheral agents refrain from coalitional deviation since the links induced by the
original clubs are satisfactory.

The case wherein the club congestion function is exponential with a = 0 corresponds to the
second part of Corollary 1 (assuming δ is high enough). Thus, the All-Paired Environment is
the unique OCS environment when membership fees are very low. Then, when membership
fees increase, the 2-Star and the 3-Complete environments become OCS. But, when c >
2(δ2− δ4), the 3-Complete Environment ceases to be OCS since aborting existing affiliations
becomes worthwhile as indirect connections are now an attractive alternative. However,
even though congestion in the 3-Star Environment is similar to that of the 3-Complete
Environment, leaving an existing club is not compensated by an indirect connection. Indeed,
by Claim 5, if δ ≥ 1

2
then for slightly higher costs (δ + δ3 − 2δ4 > 2(δ2 − δ4)), the 3-Star

Environment becomes OCS. In fact, when c ∈ (δ, 2δ2], the 2-Star Environment is not OCS,
while the 3-Star Environment still is due to the higher value of a single affiliation to the
central agent. See Appendix C for further analysis of the stability of m-Star environments
including numerical results for the case of an exponential congestion function with a > 0.

4.6 The Stability-Efficiency Gap

Proposition 4 shows that when na > m the upper bound on membership fees for which an
m-Complete Environment is OCS is (m − 1)(h(m) − h2(m)). Therefore, Proposition 3 and
Lemma 2 imply that there is never a case wherein an m-Complete Environment (na > m)
is strongly efficient and not OCS.27

This, however, is not true for m-Star environments. Recall that by Proposition 3, m-Star
environments are efficient relative to m-Uniform environments for some range of costs such
that c = kh(m) is always strictly included within this range. By Proposition 5, m-Star
environments are never OCS when c > kh(m), meaning that a range of costs always exists
where m-Star environments are not OCS although they are efficient relative to all m-Uniform
environments. In fact, Figure 6 demonstrates multiple cases where m-Star environments are
strongly efficient but not OCS.

We used our Matlab code package (see Section 8) to calculate the strongly efficient 5-agents
environment for various exponential congestion functions and membership fees.28 Each shape

27The opposite, however, is possible. Consider the case where h(2) = 0.5 and h(3) = 0.3. By Proposition
4, the 3-Complete Environment is OCS for membership fees between 0.2 and 0.42. However, when na = 9,
the total utility of the 2-Star Environment is 22− 16c while the total utility of the 3-Complete Environment
is 21.6− 36c. Thus, the 3-Complete Environment is OCS but not SE.

28a ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} and δ ∈ {0, 0.05, 0.1, . . . , 0.95 − a} for the exponential congestion function
and c ∈ {0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3} for the membership fees.
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Figure 6: Strong efficiency analysis for 5 agents and the exponential club congestion function.

in the graphs in Figure 6 represents the type of the strongly efficient environment and whether
it is OCS. First, note that all the strongly efficient environments are either m-Complete (All-
Paired or Grand-Club), m-Star (2-Star or 3-Star) or empty. Second, the unstable strongly
efficient environments are all m-Stars (2-Star or 3-Star).

5 The Individual Congestion Model

The Club Congestion model focuses on the “quality” of links within a club. But one can
think about other types of congestion. The Individual Congestion model deals with club
affiliations that require attention and time. Agents with a thin portfolio of affiliations are
able to pay more attention (or time) to each one of their club memberships and thus form
connections of high quality with other members. On the other hand, agents who are members
of many clubs possess many weak direct relations since they cannot devote much attention
to each one of their memberships. We now introduce individual congestion by relating the
weight of each link in the induced network to a non-increasing function of the number of
affiliations possessed by the agents involved.
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Figure 7: An environment, its induced weighted network and the agents’ utilities.

An individual congestion function is a non-increasing function b : {1, 2, . . . , ns} → [0, 1]
such that the weight of a link between two agents i, i′ ∈ N who share the same club in
Environment G is,

wb(i, i
′, G) = b(sG(i))× b(sG(i′))

The weight of the link between agents i and i′ is determined by the product of the congestion
attributed to each of their affiliation portfolios. In so doing, we implicitly assume that the
specifics of the clubs with which these agents are affiliated are inconsequential with regard
to the attention paid by agents to their affiliations. Also, as in the Club Congestion model,
we assume that the number of clubs that two agents share does not affect the strength of
the link between them.

Figure 7 provides an example of the Individual Congestion model. Agent 2 shares Club A
with Agent 1 and Club B with Agents 3 and 4. The individual congestion function is such
that there is no congestion when a single affiliation is maintained. However, maintaining
two affiliations leads to an individual congestion of 3

4
. Thus, in the induced weighted net-

work, Agent 2 is connected to all other agents by a congested weighted link. Agent 3 is
linked to Agent 4 by a non-congested connection, since both maintain a single affiliation.
The rightmost column demonstrates the costs and benefits in this example. The shortest
paths between agents provide the benefits. Since the induced network is connected but not
complete, some of the shortest paths are indirect connections. Consider, for example, the
path between Agent 1 and Agent 3 through Agent 2. The weight of this path is the product
of the weight of the link between Agents 1 and 2 and the weight of the link between Agents 2
and 3.29 Notice that both weights include the individual congestion of Agent 2. We consider
this double counting a requirement since Agent 2 maintains these two links independently.
Finally, the membership fees constitute the cost. While Agents 1, 3 and 4 pay membership
fees for only one club affiliation, Agent 2 pays for two memberships.

29In this example there is an additional shortest path between Agents 1 and 3, which goes through agents
2 and 4. This longer path has the same weight since the link between Agents 3 and 4 is not congested.
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5.1 Stability and Efficiency

The Grand Club Environment is the efficient environment in the Individual Congestion model
(when membership fees are not too high) since both individual congestion and membership
fees drive agents away from multiple affiliations.

Proposition 6. In the Individual Congestion model where b(1) > 0:

1. Suppose c ∈ [0, (na − 1)b2(1)) and max{b(1)− b(2), c} > 0:

(a) The Grand Club Environment is the unique SE and PE environment.

(b) The Grand Club Environment is OCS environment.

2. Suppose c > (na − 1)b2(1):

(a) The Empty Environment is the unique SE and PE environment.

(b) The Empty Environment is the unique OCS environment.

3. Let G be a non-empty, non Grand Club Environment:

(a) If G is OCS then the Grand Club Environment is OCS.

(b) For every c ∈ [0, na− 1) there is an individual congestion function such that G is
not OCS while the Grand Club Environment is OCS.

The stability and efficiency of the Grand Club Environment reflect the fact that agents
minimize individual congestion friction by sharing the same club. Similar incentives exist
when (not too high) membership fees are the sole friction introduced into the model (the case
studied in Section 3). Indeed, in both cases we observe that agents may fail to coordinate
on the Grand Club Environment and thus find themselves in some other, inefficient, OCS
environment.

Consider, for example, a Minimally Connected environment other than the Grand Club
Environment. A necessary condition for such an environment being OCS is that the loss of
connection to some club members outweighs the gain of leaving a club. When membership
fees are introduced alone, Proposition 1 suggests that indeed if membership fees (which are
the gain of leaving a club) are sufficiently low this environment is OCS. Minimally Connected
environments may also be OCS when the only friction introduced is individual congestion,
but for a different reason. In this case, leaving a club enables the agents to devote more
attention to their other affiliations thereby improving all remaining direct connections. Thus,
Minimally Connected environments may be OCS in the Individual Congestion model if the
congestion is not very strong. In this case improvement of the deviating agent’s other direct
connections is not large enough to cover the loss of connections to club members who have
been discarded.30

30For example, let G be the 3-Star Environment with 5 agents (the second example in Figure 2). By
Proposition 1, in a model with no congestion, if c ≤ 2 then G is OCS. In the Individual Congestion model
with no membership fees, if b(1) = 0.75 and b(2) = 0.38 then G is OCS.
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While Proposition 1 guarantees that Minimally Connected environments are the only OCS
environments in a setup with membership fees and no congestion friction, when individual
congestion is introduced there may be many other OCS environments that are either con-
nected (but not minimally)31 or disconnected.32 This extensive multiplicity is due to the
unattractiveness of deviations that enlarge the portfolio of affiliations. Such deviations dam-
age the value of all existing direct connections (See, for example, Lemma 9 and Lemma 10
in Appendix A).

Part 3a shows that every combination of an individual congestion function and membership
costs that makes a non-empty environment OCS, must also make the Grand Club Environ-
ment OCS. Moreover, Part 3b points out that while the efficient architecture is not sensitive
to the details of individual congestion friction, the type of mis-coordination is sensitive to
its specifics. Thus, by Proposition 6, the Individual Congestion model demonstrates that
when club formation is mainly driven by attention constraints and membership fees, no gap
between stability and efficiency emerges but there is a high potential for lack of coordi-
nation. One extreme example is given by Proposition 7 that characterizes the stability of
m-Complete environments in the Individual Congestion model.

Proposition 7. Let m ∈ N, na > m ≥ 2 and denote γ ≡ na−1
m−1

. An m-complete environment
is OCS if and only if

c ∈
[
0, (na −m)b(γ)[b(γ)− b(γ − 1)] + (m− 1)b2(γ)[1− b(γ − 1)b(γ)]

]
m-Complete environments induce considerable congestion, at least for small clubs, since
agents are members of many clubs and avoid using indirect connections. Therefore, it might
be surprising that for a large set of parameters these environments are OCS. The proof uses
the fact that in the Individual Congestion model a necessary condition for the attractiveness
of a new club is that it provides each member with at least one new direct neighbor (Lemma
9). Hence, in m-Complete environments the formation of new clubs is never attractive. For
similar reasons no agent wishes to join an existing club (Lemma 10). Thus, since for low
membership fees agents are reluctant to terminate affiliations, the m-Complete environment
is OCS. Incentive to terminate an affiliation increases with the number of agents who do not
belong to the club (na − m) and with the relief in congestion produced by leaving a club
(b(γ− 1)− b(γ)). Hence, m-Complete environments are OCS when membership fees are low
if the number of agents is not too high and if the individual congestion function is not too
steep.

31The simplest example of a connected, but not minimal, OCS environment is the circle with 4 agents
(S = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}) when b(1) = 1, b(2) = 3

4 and b(3) = 0.
32For example, suppose c = 0, let Pna be the Partitioned environment with na agents and two populated

clubs wherein half the agents are affiliated with one club and the other half with the other club (assume
na > 2 is even). It turns out that Pna is OCS for every even na if and only if b(1) ≥ 3b(2). To see that, note
that for every Agent i affiliated with Club s1, ui(Pna) = (na

2 − 1)b2(1). If Agent i joins Club s2, the utility
is ui(Pna + {i, s2}) = (na − 1)b(1)b(2). ui(Pna) ≥ ui(Pna + {i, s2}) for any na if and only if b(1) ≥ 3b(2).
b(1) ≥ 3b(2) also prevents deviations to a new club (because formation of a new club is less attractive than
joining the another already populated club). Finally, leaving a club is not a profitable deviation since c = 0.
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5.2 A Model with Club Congestion and Individual Congestion

Consider the model containing both club congestion and individual congestion. Given club
congestion function h(·) and individual congestion function b(·), the weight of a link between
two agents i, i′ ∈ N that share a club in Environment G =< N,S,A > is

whb(i, i
′, G) = b(sG(i))× b(sG(i′))× max

s∈SG(i)∩SG(i′)
h(nG(s))

The weight of each link in the induced network is the product of a non-increasing function
of the size of the smallest club shared by the end agents and a non-increasing function of
the number of affiliations of those same agents.33

5.2.1 The Coauthors Model (Jackson and Wolinsky (1996))

In the Coauthors model agents equally distribute one unit of attention between their direct
relations. The value of each relation only depends on the attention devoted to the link by
the two end agents. Specifically, the utility of Agent i from Network g is

uCAi (g) =
∑

j 6=i:{i,j}∈g

[
1

ni(g)
+

1

nj(g)
+

1

ni(g)nj(g)
]

where nk(g) is the number of Agent k’s direct neighbors. Denote by CA(n) the set of pairwise
stable networks with n agents.

Agents’ preferences are truncated at geodesic distance D if the weight of path p =
{x1, . . . , xl} is the product of the weights on its links if l − 1 ≤ D and zero otherwise.
For example, when D = 1 Agent i benefits from the path to Agent j only if both agents
are directly connected in the induced network. Denote by OCS(c, n, h, b,D) the set of
OCS environments with n agents wherein the club congestion function is h, the individual
congestion function is b, the membership fees are c and the agents’ preferences are truncated
at geodesic distance D.

Proposition 8 uses the definitions and notations introduced in Section 4.1 for a comparison
of unweighted networks and environments to show that the Coauthors Model is a truncated

33Zhou et al. (2007) study the loss of information when a bipartite network is projected onto a directed
one-mode network. They propose the following weighting scheme: Each node is endowed with some resources
that are distributed equally among affiliations. Then, the total amount of resources each club accumulates
is equally distributed among all its members. The weight of the direct link from Node i to Node j is the
sum of the resources transferred from Node i to Node j. While Zhou et al. (2007) is a technical work on
projection and not a model of strategic network formation, its weighting scheme bears some relation the
model presented in this section. Specifically, the distribution of the node’s resources and the distribution
of the club’s accumulated resources resemble the Individual Congestion function and the Club Congestion
function, respectively.
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version of our model containing the two types of congestion.34

Proposition 8. The Coauthors Model is a special case of the truncated model with club
congestion and individual congestion. Specifically, let the club congestion function be h(2) =
1, ∀m > 2 : h(m) = 0 and let the club congestion function be b(k) = 1

2
[1 + 1

k
]:

1. g ∈ CA(n) if and only if Gg ∈ OCS(1
4
, n, h, b, 1).

2. If G ∈ Gn\GGn then G /∈ OCS(1
4
, n, h, b, 1).

6 Club Rules: Closed Clubwise Stability

There are many possible rules regarding the forming, joining or leaving of social clubs. Each
set of rules induces a different set of possible deviations and therefore corresponds to a
different stability concept. So far we have only considered Open Clubwise Stability that
implements an open environment in which the joining, leaving and formation of clubs is
done freely as long as membership fees are paid. But there are environments in which clubs
have more restrictive rules. For example, clubs in which the acceptance of new members
requires the agreement of incumbent club members, are very common. Such a requirement
is observed in various social groups (e.g. academic departments, fraternities and sororities
and kibbutzim) as well as in international organizations (e.g. the European Union). We
demonstrate the application of this club rule by introducing the Closed Clubwise Stabil-
ity solution concept which considers stability under the requirement that incumbents must
unanimously approve every new member.35

An Environment G is Closed Clubwise Stable (henceforth, CCS) if the following condi-
tions obtain:

(i) No Leaving: ∀s ∈ S, ∀i ∈ NG(s) : ui(G,w, c) ≥ ui(G− {i, s}, w, c).

(ii) No New Club Formation: ∀m ⊆ N :
∃i ∈ m : ui(G+m,w, c) > ui(G,w, c)⇒ ∃j ∈ m : uj(G+m,w, c) < uj(G,w, c).

(iii) No Joining: ∀s ∈ S, ∀i /∈ NG(s) :
ui(G,w, c) ≥ ui(G+ {i, s}, w, c) OR ∃j ∈ NG(s) : uj(G,w, c) > uj(G+ {i, s}, w, c).

34The nontransferable social value model in Hout et al. (2013) is also a special case of the truncated model

with club congestion and individual congestion wherein h(2) = 1, ∀m > 2 : h(m) = 0, b(k) =
√
V s

kρ , c = 0 and
D = 1. In addition, this version of our model can also accommodate other approaches to the individual’s
limited capacity for maintaining direct connections (e.g. Currarini et al. (2016) and Moody (2001)).

35The literature on the stability of coalition partitions and jurisdictions also explores various admission
rules. The basic rule is free mobility (Tiebout (1956)) wherein each group of agents can freely move from one
coalition to another. Well studied restrictions of free mobility in this context are exclusion rules and capacity
thresholds (e.g. Greenberg (1979), Drèze and Greenberg (1980), Jehiel and Scotchmer (2001), Bogomolnaia
and Jackson (2002), Scotchmer (2002) and Watts (2007)).
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For an environment to be CCS, the unanimous agreement of incumbent club members is
required in order to join a club. Since this requirement makes the joining deviation harder
to execute, Open Clubwise Stability is a refinement of Closed Clubwise Stability.

Generally, admission of new members into the club induces both positive and negative exter-
nalities upon incumbent members. Positive externalities stem from new (or shorter) paths
provided by the new member. Negative externalities stem from the effects of congestion.
Clearly when there is no congestion, incumbents receive only positive externalities from ad-
mitting new members, and therefore they would never object it. This implies that in the
baseline case of no congestion (Section 3) the OCS and CCS solution concepts coincide.

6.1 Closed Clubwise Stability: The Club Congestion Model

When there are no membership fees the set of CCS environments is the set of spanning super
environments of the All Paired Environment.36 Hence, the difference between Open Clubwise
Stability and Closed Clubwise Stability exists only when there are positive membership fees
and strict club congestion.

In order to demonstrate the difference between OCS and CCS we define the Almost Grand
Club Environment as an environment in which there is exactly one populated club and
all agents except for one are affiliated with it.37

For a given number of agents na > 3, let h(·) be a club congestion function such that
kh(na − 1) > kh(na) > max

k∈{2,...,na−2}
kh(k).38 Consider the Almost Grand Club Environment

when kh(na) > c > max
k∈{2,...,na−2}

kh(k). In this case, no agent would want to leave the popu-

lated club since kh(na − 1) > c. No subset of agents would want to form a new club since
c > max

k∈{2,...,na−2}
kh(k).39 Since kh(na) > c, the isolated agent wishes to join the populated

club and the Almost Grand Club Environment is not OCS. But, since kh(na − 1) > kh(na)
such a deviation will strictly harm incumbents of the populated club who lose out because
the positive externalities (one new direct connection) are lower than the negative external-
ities (weaker direct connections to all other incumbents due to stronger club congestion).

36If Environment G is a spanning super environment of the All Paired Environment it is OCS and therefore
also CCS. If Environment G is not a spanning super environment of the All Paired Environment, then there
are two agents that are better off forming a new club of size 2 and G is not CCS.

37Formally, ∃s ∈ S such that nG(s) = na − 1, ∀s′ ∈ S\{s} : nG(s′) = 0 and A = ∪na−1
i=1 {i, s}.

38One example of a club congestion function that satisfies these properties is the exponential congestion

function with a = 0 and δ =

√
4n2
a−16na+14

2(na−1) (to see this, note that δ ∈ (1 − 1
na−2 , 1 −

1
na−1 ) and recall the

logic used in the proof of Lemma 4).
39For every size k of the new club, the benefits for deviating agents are bounded from above by kh(k).

Therefore c > max
k∈{2,...,na−2}

kh(k) guarantees no deviations to clubs of size na − 2 or smaller. The maximal

gain for an agent affiliated with the populated club from being involved in the formation of a new club of
size na − 1 or na is bounded by h(na − 1). Since na > 3, c > kh(na − 2) = (na − 3)h(na − 2) ≥ h(na − 1).
This means that c > max

k∈{2,...,na−2}
kh(k) guarantees no deviations to form new clubs.
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Hence, the Almost Grand Club Environment is CCS. Although we do not pursue a dynamic
analysis of our setting wherein agents join the environment sequentially, it is intuitive that
while OCS encourages integration (in this example, one big club), CCS may drive the envi-
ronment toward segregation (uniform partition).

6.2 Closed Clubwise Stability: The Individual Congestion Model

In the Individual Congestion model, the externalities induced by admission of new members
into a club depend upon the connections between incumbents and the agents desirous of
admission prior to the entrance. Positive externalities arise from new and shorter paths
provided to incumbents by new members. These externalities are high when prior to admis-
sion, new members are distant in the induced network. Upon admitting these new members,
incumbents get closer to them and their locality. Negative externalities arise from the dam-
age caused to existing connections due to the deterioration in the quality of the direct links
maintained by the new members. These externalities are high when prior to admission new
members are involved in many of the shortest paths originating from incumbents.

To demonstrate both the positive and negative externalities in the admission of new mem-
bers and their effect upon stability in the Individual Congestion model, suppose na is odd
and consider the na+1

2
-Star Environment (denoted by G). This environment includes two

populated clubs of equal size (m = na+1
2

), Club s and Club t that have exactly one member,
Agent i, in common (NG(s) ∩ NG(t) = {i}). When Agent j 6= i from Club s wishes to
join Club t, each agent in Club t who is not a member of Club s would approve since their
connection with Agent j improves from being indirect of value b2(1)b2(2) to being direct of
value b(1)b(2). However, Agent i would oppose such an admission since the connection with
Agent j deteriorates from b(1)b(2) to b2(2). Thus, the na+1

2
-Star Environment is not OCS

but it is CCS.40 This example, just like the previous one, demonstrates that while OCS leads
to integration, the CCS internalizes the negative externalities of new member admissions
and identify some segregated environments as stable in addition to the OCS environments
characterized in Sections 4 and 5.

40For example, let b(k) = 1
k+1 be the individual congestion function and let c = 1

18 . Agent i gains
1
6 (na − 1) in G and only 1

4
na−1

2 in G− {i, s} or G− {i, t} so this agent would not want to abort any of her
affiliations. Any other agent j 6= i gains at least 1

6 −
1
18 in G (from the link with Agent i) and zero if isolated.

Thus, no agent would want to leave a club. Note that Agent i already has a direct link to all other agents,
so joining a new club would produce a loss. Next, consider the most profitable new club for Agent j 6= i that
is affiliated with Club s. Such a club includes Agent j and all the members of Club t excluding Agent i. It
is easy to see that the benefits of so doing sum to 1

36 while the costs are 1
18 . Therefore even this attractive

deviation is not worthwhile. Hence, no subset of agents would want to form a new club. It is also easy to
show that by joining Club t the utility of Agent j would increase by na−2

36 (which is positive since na > 2).

Hence, the na+1
2 -Star Environment is not OCS. However, Agent i (who is a member of Club t) would oppose

this admission since it decreases that agent’s utility by 1
18 . Hence, the na+1

2 -Star Environment is CCS.
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7 Clustering

A well-known real-life phenomenon in social networks is that they are characterized by high
clustering. That is, in most real-life networks the probability of two individuals who share a
common neighbor to be connected is much higher than would be expected if the connections
had formed randomly (see Goyal (2007) and Jackson (2008)). High clustering affects the
spread of information and therefore access to jobs, ideas and other resources. As a result,
clustering has become a central topic of interest for social networks researchers.

Social sciences literature (see Rivera et al. (2010) for a recent survey) frequently attributes
high clustering in social networks to one of two explanations. First, individual preference for
connections with individuals with whom a shared connection already exists. Termed “pref-
erence for transitivity,” it can be based on various motives, such as reduced uncertainty, im-
proved monitoring, conflict mitigation and minimization of opportunism (see Heider (1946),
Cartwright and Harary (1956), Coleman (1988) and Hummon and Doreian (2003)). Another
explanation based on homophily describes an environment wherein individuals prefer to link
to individuals with whom they share common social traits such as race, gender, country of
origin, etc (see McPherson et al. (2001)).

A relatively recent body of literature attempts to provide econometric tools for estimating
various network formation models that incorporate homophily, preference for transitivity
and state dependence in links.41 A growing concern in this literature is that neglect of
self-selection into social contexts leads to over-estimation of the importance of homophily
and preference for transitivity in the process of network formation (see Rivera et al. (2010),
Currarini et al. (2010) and Miyauchi (2016)).

Indeed, we believe that our setting provides a third explanation for the high clustering
observed in real-life networks. Since every pair of agents who share a club is connected in
the induced network, the affiliation portfolios chosen by individuals induce a social network
composed of a collection of cliques. Therefore, in our framework, a network induced by
non-trivial clubs (e.g. of size greater than 2) must exhibit high local clustering since an
individual’s neighbors form a tightly knit group (see also Bar (2005)).42 Hence, we propose
considering clubs as linking platforms rather than individuals’ linking preferences as the

41One of the main challenges of this literature is the treatment of homophily on unobservables. Goldsmith-
Pinkham and Imbens (2013) introduce homophily on unobservables by assuming that the relevant unobserv-
ables are binary and distributed independently of all observables. In Mele (2017) individuals are partitioned
exogenously to unobserved communities and they exhibit preference for transitivity only within these com-
munities. Graham (2015, 2016) proposes to exploit the fact that homophily is independent of network
structure. See the discussion in Jackson (2014).

42Jackson et al. (2012) point out that such environments are characterized also by high support. That
is, the fraction of links which are part of a triad is high. Latapy et al. (2008) suggest clustering indices for
affiliation networks based on intersections of affiliation portfolios.
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fundamental that drives the high clustering observed in real-life networks.43

8 Concluding comments

The focus of our paper is on the formation of social networks based on the endogenous
formation of social clubs. Our analysis relies on two important assumptions: clubs (beside
their size) and agents are homogeneous. A more complete picture of the social architecture
may include the endogenous formation of a variety of clubs that may differ in membership
costs, quality of induced links and rules of entry, exit and formation. For example, in some
clubs the interaction among members may be more intense than in others and as a result
they may differ in their congestion functions and membership fees (e.g. Young and Larson
(1965a)). We also assume that individuals are homogeneous. In a model of heterogeneous
agents the weight of each link may depend on the identity of the agents (e.g. Bruggeman
(2016)) and may also be asymmetric. The authors’ benefit derived from being connected to
Leo Messi is probably different from the benefit he derives from being connected to us. These
benefits affect the attractiveness of different clubs and their composition. As a result they
also affect the stable social environments that may emerge from our endogenous affiliation
setting.

The concept of clubs as platforms for link formation can be applied also to non-social con-
texts. For example, consider the environment of open source software development wherein
individuals work on different R&D projects. A project can be viewed as a social club and
a developer can be viewed as a club of projects (See Fershtman and Gandal (2011)). A
similar view can be taken of countries that participate in multi-lateral trade agreements,
interlocking corporate directorates (e.g. Mizruchi (1996)), standardization committees (Bar
and Leiponen (2008) and Leiponen (2008)), etc.

Finally, a Matlab package (including a detailed user manual) that provides tools for exploring
stability and efficiency in the Club Congestion model, the Individual Congestion model and
the model that includes both types of congestion, accompanies this paper. The package can
be found on the second author’s website.

43Obviously, in some contexts these explanations coexist. One example is the discussion in Currarini et al.
(2009) on social clubs as the platform on which matching biases (as homophily) evolve. Another example
is Kossinets and Watts (2006) who track emails of students, faculty, and staff at a large research university
over an academic year. They find that among students who do not share a common class, having a mutual
contact increase the probability of communication by 140 times. However, if students do share a class they
were only 3 times more likely to begin communicating if they shared a common correspondent. Datasets
that contain both club affiliations and the social network, as in the one studied by Kossinets and Watts
(2006) (or by Young and Larson (1965a)), may enable researchers to disentangle these three explanations
(see also the discussion in Feld (1981)). The method suggested in Chandrasekhar and Jackson (2017) for
the estimation of network formation models, can be interpreted as an econometric analysis of network data
where club affiliations are assumed but not observed (see Section 3 therein).
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Appendix

A Proofs

A.1 Lemma 1

Proof. Obviously, G − {i, s} contains one component that includes Agent i. Since G is
minimally connected, this environment contains at least one additional component.
Suppose C and C ′ are two components of G−{i, s} that do not include Agent i. Let Agent
j be a member of C and Agent j′ be a member of C ′. Since G is connected, there is a path
between j and j′ in G and since they reside in different components in G − {i, s}, there is
no path between them in G− {i, s}.
Hence, the path between j and j′ in G must include the affiliation of Agent i in Club s.
Therefore, this path must be of the form {j, . . . , k, i, k′, . . . , j′} where either k is affiliated
with Club s or k′ is affiliated with Club s but not both.
With no loss of generality, assume that k is affiliated with Club s while k′ is not affiliated
with Club s. Therefore, agents i and k′ share a club in G which is not s. Hence, i and
k′ share a club in G − {i, s}. But, then there is a path between Agent i and Agent j′ in
G−{i, s} in contradiction to C ′ being a component of G−{i, s} that does not include Agent
i. Thus, G− {i, s} contains exactly two components.

A.2 Proposition 1

Proof. Suppose na − 1 > c > 0. First, consider the case where G is a Minimally Connected
environment of class K(G) ≥ c. Since G is connected no agent can benefit by joining a club
or by forming a new club. Also, by leaving a club, every agent loses connection to at least
K(G) agents while gaining the membership fees. Since K(G) ≥ c, the agent can not gain by
leaving a club. Therefore, G is OCS.
Next, consider the case where G is not a Minimally Connected environment of class K(G) ≥
c. If G is the Empty environment then consider the deviation where all the agents form a
new club. The benefit for each individual is na − 1− c > 0. Hence, the Empty environment

43



is not OCS.
If G is a non-empty disconnected environment then there must exist a component H that
contains h > 1 agents. The maximal possible utility of an agent in H is (h − 1) − c. If
c > h − 1 then every member of this component would like to leave any of her clubs. If
c ≤ h− 1 then any agent that is not in H can improve if she joins one of H’s clubs since she
gets h− c > 0. Hence, no disconnected environment is OCS.
If G is connected, but not minimally connected, there is an affiliation that can be removed
while leaving the induced network connected. Denote this affiliation by {i, s}. Then, Agent
i, by leaving club s can improve his net utility by c. Hence, no connected, but not minimally
connected, environment is OCS.
Next, suppose that G is a minimally connected network of class K(G) < c. Consider
an affiliation {i?, s?} ∈ arg min

{i,s}∈A
n(C−i(G− {i, s})). Agent i? wishes to leave club s? since

while losing the connection to K(G) agents she gains c, and K(G) < c. Hence, if G is not
a Minimally Connected environment of class K(G) ≥ c then G is not OCS. This completes
the proof of Part 1a.
Since na−1 > c, the maximal utility an agent can obtain is ui(G) = na−1−c. In the Grand
Club Environment every agent achieves the maximal utility. Therefore, the Grand Club
Environment is PE. Moreover, any other environment is either disconnected or it contains
at least one agent that maintains multiple affiliations. In both cases there is at least one
individual with a utility lower than na− 1− c. Therefore, the Grand Club Pareto dominates
any other environment. Hence, the Grand Club Environment is the unique PE environment.
Therefore, the Grand Club Environment is also the unique SE environment.
Last, suppose that c > na − 1. Every agent that maintains memberships in a non-empty
environment, wishes to leave any of her clubs. Therefore, every non-empty environment G is
not OCS. Moreover, none of the agents in those environments have positive utility and there
is at least one with negative utility. However, in the Empty environment, no coalition of
agents is better off by establishing a new club. Therefore, the Empty Environment is OCS.
Since all the agents have zero utility, it is also PE and SE. Hence, the Empty environment
is the unique OCS, PE and SE environment.

A.3 Lemma 2

Proof. Suppose that Environment G is Pareto Efficient but does not satisfy the “No New
Club Formation” condition. Thus, there exists a coalition m ⊆ N such that for every
member i of m, ui(G+m,w, c) ≥ ui(G,w, c) and for at least one of them the inequality is
strict. Note that the weighted network induced by G + m (henceforth, gG+m) differs from
the weighted network induced by G (henceforth, gG) only in links where both end agents
belong to m. Moreover, if i, j ∈ m share a smaller club in G then the link between them
and its weight are the same in gG+m and in gG. Thus, the differences between gG+m and gG
are only in links between members of m that share bigger clubs in G or share no clubs at all
in G. Therefore, gG+m may have links that do not exists in gG or links with higher weights
then in G. This implies that the direct links of every agent k ∈ N\m are the same in gG+m

and in gG. Moreover, her indirect links can only get shorter in gG+m compared to gG (either
due to new links or to higher weights). Since the costs of the agents in N\m are identical
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in G and in G + m, ∀k ∈ N\m : uk(G+m,w, c) ≥ uk(G,w, c). Therefore, for every i ∈ N ,
ui(G+m,w, c) ≥ ui(G,w, c) and for at least one of them the inequality is strict. Hence,
G is not Pareto Efficient, contradiction. Therefore, if Environment G is Pareto Efficient it
satisfies the “No New Club Formation” condition.

A.4 Lemma 3

Proof. By the definition of the club congestion function, the weight of each link is determined
by a single club - the smallest club the two end agents share. Since the benefit part of the
agent’s preferences depends only on the weights in the induced network, there may be at
most na − 1 affiliations that determine the individual’s benefits. Similarly, at most na(na−1)

2

clubs contribute to the benefits of any agent in the environment. However, all populated
clubs contribute to the costs part of the preferences, since each affiliation is costly (c > 0).
Hence, every G that includes an individual that maintains more than na − 1 affiliations is
not OCS. Moreover, if G includes more than na(na−1)

2
populated clubs, there is at least one

club that does not contribute to the benefits of any of its members. Therefore, each one of
its members would wish to cancel this affiliation and G is not OCS.

A.5 Lemma 4

Proof. By definition, h(m) is inelastic if and only if ∀m ∈ {2, . . . , na − 1} : ηh(m) > −1.

ηh(m) > −1 if and only if m×h(m+1)
h(m)

− m > −1. Therefore h(m) is inelastic if and only if

kh(m+1) = m×h(m+ 1) > (m−1)×h(m) = kh(m). Hence, h(m) is inelastic if and only if
kh(m) is strictly increasing. Similar argument shows that h(m) is elastic if and only if kh(m)
is strictly decreasing.

A.6 Proposition 2

A.6.1 Lemma 5

Lemma 5. If c > 0 and the Club Congestion function is h(2) = δ and ∀m > 2 : h(m) = 0
then ∀g ∈ Gn, ∀i ∈ N : ui(Gg) = uJWi (g).

Proof. Note that for every un-weighted network g =< N,E >, the induced network of Gg

denoted by ḡ =< N, Ē,W > is such that Ē = E and, by the choice of h(·), each link has a
weight of δ since the clubs are all of size two.
Since all the weights in ḡ are the same, the length of the shortest weighted path between
agents i and j in ḡ is the same as the length of the shortest path between them in g.
Therefore, the distance between agents i and j in ḡ equals δdij where dij is the geodesic
distance between agents i and j in ḡ and therefore also in g. As a consequence, the benefits
of the agents in Gg equal their benefits in g.
Moreover, by construction, the number of direct links each agent maintains in g equals the
number of her affiliations in Gḡ. Therefore, the costs of the agents in Gg equal their costs in
g. Hence, ∀i ∈ N : ui(Gg) = uJWi (g).
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A.6.2 Lemma 6

Lemma 6. Let g =< N,E > be an un-weighted network and let Gg =< N,S,A > be
the corresponding environment. ∀i, j ∈ N such that ∃s ∈ S : {{i, s}, {j, s}} ⊆ A then
ui(Gg−{i,j}) = ui(Gg − {i, s}).

Proof. By construction, the Environment Gg−{i,j} includes the same clubs as Gg excluding
Club s. Therefore its induced weighted network ḡ−s is identical to g excluding the link
between agents i and j. Denote the benefits of Agent i in ḡ−s by B. Then ui(Gg−{i,j}) =
B − (sGg(i)− 1)× c.
Environment Gg−{i, s} includes the same clubs as Gg, but the affiliation of Agent i in Club
s is dropped. Since Club s is a singleton in Gg − {i, s}, it induces no links. Therefore, ḡis,
the weighted network induced by Gg−{i, s} is identical to ḡ−s. Hence, the benefits of Agent
i in ḡis are B and ui(Gg − {i, s}) = B − (sGg(i) − 1) × c.44 Thus, we get ui(Gg−{i,j}) =
ui(Gg − {i, s}).

A.6.3 The Proof

Proof. We suppose that g ∈ PS(δ, c, n) and show that Gg ∈ OCS(c, n, h). The “No Joining”
condition holds since the utility from a club of size 3 is zero while the participation fees are
positive. For the same reason, no coalition of size greater than two wishes to form a new
club.
Next, consider two agents, i and j, that do not share a club in Gg. Then, by construc-
tion, Agent i and Agent j are not linked in g. Since g is pairwise stable, if uJWi (g) <
uJWi (g + {i, j}) then uJWj (g) > uJWj (g + {i, j}). By Lemma 5, if ui(Gg) < ui(Gg+{i,j})
then uj(Gg) > uj(Gg+{i,j}). Denote by mij the coalition that includes only agents i and
j. Then, note that Gg+{i,j} is identical to Gg + mij since both denote the addition of Club
s that includes agents i and j to Environment Gg. Hence, if ui(Gg) < ui(Gg +mij) then
uj(Gg) > uj(Gg +mij). Therefore, no coalition of size two wishes to form a new club and
the “No New Club Formation” condition holds.
For the “No Leaving” condition, consider Agent i that participates, together with Agent
j, in Club s in Gg. Then, by construction, Agent i and Agent j are linked in g. Since
g is pairwise stable uJWi (g) ≥ uJWi (g − {i, j}). By Lemma 5, ui(Gg) ≥ ui(Gg−{i,j}). By
Lemma 6, ui(Gg) ≥ ui(Gg − {i, s}), meaning that this condition also holds. Therefore,
Gg ∈ OCS(c, n, h).
For the other direction, we suppose that Gg ∈ OCS(c, n, h) and show that g ∈ PS(δ, c, n).
First, consider Agent i that is linked with Agent j in g. By construction Agent i partici-
pates, together with Agent j, in Club s in Gg. Since Gg is OCS, ui(Gg) ≥ ui(Gg − {i, s}).
By Lemma 6, ui(Gg) ≥ ui(Gg−{i,j}). By Lemma 5, uJWi (g) ≥ uJWi (g − {i, j}), meaning that
no agent wishes to discard an existing link. Next, consider two agents, i and j, that are not
linked in g. By construction agents i and j do not share a club in Gg. Since Gg is OCS,
if ui(Gg) < ui(Gg +mij) then uj(Gg) > uj(Gg +mij). But, as mentioned above, Gg+{i,j} is
identical to Gg + mij. Therefore, if ui(Gg) < ui(Gg+{i,j}) then uj(Gg) > uj(Gg+{i,j}). By
Lemma 5, if uJWi (g) < uJWi (g + {i, j}) then uJWj (g) > uJWj (g + {i, j}), meaning that no pair

44The single difference in agents’ utilities between Environment Gḡ−{i,j} and Environment Gḡ − {i, s} is
that in the latter the costs of Agent j are nGḡ (j)× c while in the former her costs reduce to (nGḡ (j)− 1)× c.
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of agents wishes to form a new link. Therefore, g ∈ PS(δ, c, n).
For the second part note that since we assume that Gn includes only environments with
distinct clubs, every environment G ∈ Gn\GḠn includes at least one populated club of size
greater than two. However, every agent that participates in a club of size greater than two
wishes to leave the club since its benefits are zero (all induced links of such club are of weight
zero) while the membership fees are positive. Therefore, G /∈ OCS(c, n, h).

A.7 Proposition 3

Proof. Throughout the proof we assume that na−1
m−1

and na(na−1)
m(m−1)

are integers. Consider first

the maximal sum of utilities of a connected environment G ∈ Gmn with at most na(na−1)
m(m−1)

clubs.

By Proposition 2 in Berge (1989), the minimal number of clubs in a connected m-Uniform

Environment is na−1
m−1

. Denote the number of clubs by na(na−1)
m(m−1)

≥ k ≥ na−1
m−1

. The maximal

total number of direct connections across all agents in the environment is km(m − 1) and
their value is km(m−1)h(m). Since the induced network is connected, the number of indirect
connections is na(na−1)−km(m−1) and their maximal value is [na(na−1)−km(m−1)]h2(m).
The total cost of participation in k clubs of size m is kmc. Thus, the maximal sum of utilities
of a connected m-Uniform Environment with k clubs is

km(m− 1)h(m) + [na(na − 1)− km(m− 1)]h2(m)− kmc

An m-Complete Environment includes na(na−1)
m(m−1)

clubs (each club generates m(m−1)
2

links out

of the na(na−1)
2

possible links and each link is generated exactly once). Therefore, the sum of
utilities of an m-Complete Environment is

na(na − 1)h(m)− na
na − 1

m− 1
c

The difference between these two expressions is

[km(m− 1)− na(na − 1)]h(m) + [na(na − 1)− km(m− 1)]h2(m)− [km− na
na − 1

m− 1
]c

Or,

[km(m− 1)− na(na − 1)][h(m)− h2(m)− c

m− 1
]

Obviously, there must be a k such that the maximal total sum of utilities of a connected
m-Uniform Environment is greater than the total sum of utilities of an m-Complete Envi-
ronment. Therefore, this difference must be non-negative for some k. If c < (m− 1)[h(m)−
h2(m)], [km(m − 1) − na(na − 1)] must be non-negative, meaning that k ≥ na(na−1)

m(m−1)
. Since

na(na−1)
m(m−1)

≥ k ≥ na−1
m−1

it must be that k = na(na−1)
m(m−1)

and the difference is zero. Also, if

c = (m− 1)[h(m)− h2(m)] the difference is zero. Therefore, the m-Complete Environment
achieves the maximal sum of utilities of the set of connected m-Uniform environments with
at most na(na−1)

m(m−1)
clubs when c ≤ (m− 1)[h(m)− h2(m)].
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Next, let G′ be some m-Uniform environment with k > na(na−1)
m(m−1)

populated clubs. Each

agent i ∈ {1, . . . , na} in G′ gets at most (na−1)h(m) (in case she is directly connected to all
other agents). Therefore, the total benefits in G′ are at most na(na− 1)h(m) while the total

membership fees are kmc > na(na−1)
(m−1)

c. Hence, the total sum of utilities of an m-Complete
Environment is weakly greater than the total sum of utilities of any m-Uniform environment
with k > na(na−1)

m(m−1)
populated clubs. In particular, this means that the m-Complete Environ-

ment achieves the maximal sum of utilities of the set of connected m-Uniform environments
when c ≤ (m− 1)[h(m)− h2(m)].
This result implies that an environment that maximizes the sum of utilities from the set
of non-empty m-Uniform environments when c ≤ (m− 1)[h(m)− h2(m)] is a collection
of m-Complete components and isolated agents. Note that the sum of utilities of an m-
Complete component with n agents (n > 1) is n(n − 1)[h(m) − c

m−1
]. Since [h(m) − c

m−1
]

is non-negative, the sum of utilities of an m-Complete component is a weakly increas-
ing and weakly convex function of the number of agents in the component. Therefore, if
c ≤ (m− 1)[h(m)− h2(m)] an environment that achieves the maximum of the sum of util-
ities from the set of non-empty m-Uniform environments is the m-Complete Environment.
Also, when c ≤ (m− 1)[h(m)− h2(m)], the sum of utilities of the m-Complete Environment
is non-negative. Thus, when c ∈ [0, (m − 1)(h(m) − h2(m)] the m-Complete Environment
achieves the maximum of the sum of utilities from the set of all m-Uniform environments.
An m-Star Environment includes na−1

m−1
clubs. Therefore, the sum of utilities of an m-Star

Environment is

na − 1

m− 1
m(m− 1)h(m) + [na(na − 1)− na − 1

m− 1
m(m− 1)]h2(m)− na − 1

m− 1
mc

The difference between the maximal sum of utilities of a connected m-Uniform Environment
with k clubs is

[k − na − 1

m− 1
]m(m− 1)h(m)− [k − na − 1

m− 1
]m(m− 1)h2(m)− [k − na − 1

m− 1
]mc

Or,

[k − na − 1

m− 1
]m[(m− 1)h(m)− (m− 1)h2(m)− c]

Again, there must be a k such that the maximal total sum of utilities of a connected m-
Uniform Environment is greater than the total sum of utilities of an m-Star Environment.
Therefore, this difference must be non-negative for some k. If c > (m − 1)[h(m) − h2(m)],
[k − na−1

m−1
]m must be non-positive and since k ≥ na−1

m−1
it must be that k = na−1

m−1
and the

difference is zero. Also, if c = (m − 1)[h(m) − h2(m)] the difference is zero. Therefore, the
m-Star Environment achieves the maximal sum of utilities of the set of connected m-Uniform
environments when c ≥ (m− 1)[h(m)− h2(m)].
This result implies that when c ≥ (m− 1)[h(m)− h2(m)] an environment that maximizes the
sum of utilities from the set of non-empty m-Uniform environments is a collection of m-Star
sub-environments and isolated agents. In fact, an environment that maximizes the sum of
utilities from the set of m-Uniform environments is a collection of m-Star sub-environments
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with non-negative sum of utilities and isolated agents.
Suppose that C1 and C2 are two m-Star environments with n1 > 1 and n2 > 1 agents,
respectively. Let b1 and b2 be the central agents of C1 and C2, respectively. Consider a
new environment C that includes the clubs of C1 and the clubs of C2 where b2 is replaced
by b1. Thus, C is an m-Star environment with n1 + n2 − 1 agents with an additional
isolated agent. The utility of the central agent in C is the sum of utilities of b1 and b2 in
C1 and C2, respectively. The utility of all other agents improves due to the additional free
indirect connections. Thus, uniting two m-stars into one bigger m-Star environment (and
an isolate) always increase the sum of utilities. That is, when c ≥ (m− 1)[h(m)− h2(m)],
an environment that achieves the maximal sum of utilities from the set of non-empty m-
Uniform environments is an m-Star environment and some isolated agents. Thus, assuming
that na−1 is a multiple of m−1, if c ≥ (m− 1)[h(m)− h2(m)], an environment that achieves
the maximal the sum of utilities from the set of non-empty m-Uniform environments is the
m-Star Environment.
To complete the proof notice that the m-Star Environment achieves the maximal sum of
utilities from the set of all m-Uniform environments if and only if it has a non-negative
sum of utilities. If it has non-positive sum of utilities, the Empty Environment achieves the
maximal the sum of utilities from the set of m-Uniform environments. The condition for the
sum of utilities of the m-Star Environment with na agents to be non-negative is

(m− 1)h(m) +
(na −m)(m− 1)

m
h2(m) ≥ c

Thus, when c ∈ [(m − 1)(h(m) − h2(m)), (m − 1)h(m) + (na−m)(m−1)
m

h2(m)] the m-Star
Environment achieves the maximal sum of utilities from the set of m-Uniform environments.
When c ≥ (m− 1)h(m) + (na−m)(m−1)

m
h2(m) the Empty Environment achieves the maximal

the sum of utilities from the set of m-Uniform environments.

A.8 Proposition 4

Proof. Let G be an m-Complete Environment. Assume, first, that na > m ≥ 2 (there is
more than one club in the environment). The utility of Agent i from Environment G is
(denote γ ≡ na−1

m−1
∈ N):45 ui(G) = (na − 1)h(m)− γc.

To calculate the utility of Agent i from aborting any one of her affiliations, suppose that
Agent i leaves Club s which she shares with Agent i′. In addition, suppose she shares the Club
s′ with Agent i′′. By the definition of an m-Complete environment, SG−{i,s}(i)∩SG−{i,s}(i′) =
∅. Thus, the new shortest path between Agent i and Agent i′ must be indirect. Again, by the
definition of m-Complete environments the populated clubs in G−{i, s} are of size m except
Club s which is of size m− 1. Therefore, the new shortest path is of length 2 and its weight
must be either h(m−1)h(m) or h2(m) (any path of length of more than 2 has a lower or equal
weight than h2(m)). Now, let us show that in G − {i, s} there is no shortest path between
Agent i and Agent i′ of the weight h(m−1)h(m). Suppose such a path exists. Then, there is
an Agent j who shares a club with Agent i (denoted by t) and also shares Club s with Agent i′.

45We assume that na−1
m−1 and na(na−1)

m(m−1) are integers. For further details see Footnote 19.
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Thus, in G, Agent j shared s also with Agent i which implies, however, SG(i)∩SG(j) = {s, t}
and the m-completeness of G is violated. However, a shortest path of weight h2(m) between
Agent i and Agent i′ in G−{i, s} does exist. Recall that Agent i shares Club s′ with Agent i′′

and note that Agent i′′ is not a member of Club s (otherwise agent i and i′′ share two clubs in
G) and that Agent i′ is not a member of Club s′ (otherwise agent i and i′ share two clubs inG).
Hence, by the definition of an m-complete environment, ∃s′′ ∈ S\{s, s′} : {i′, i′′} ⊆ NG(s′′).
Thus, Agent i has a link of weight h(m) with Agent i′′ (Club s′) and Agent i′′ has a link
of weight h(m) with Agent i′ (Club s′′). Therefore, there is a path of weight h2(m) be-
tween Agent i and Agent i′ in Environment G − {i, s}. Thus, the utility of Agent i from
Environment G − {i, s} is ui(G − {i, s}) = (na − m)h(m) + (m − 1)h2(m) − (γ − 1)c and
ui(G−{i, s})−ui(G) = (m−1)h2(m)−(m−1)h(m)+c. Agent i would not wish to leave any
of her clubs if and only if ui(G− {i, s}) ≤ ui(G), meaning that she would not wish to leave
any of her clubs if and only if (m− 1)[h(m)− h2(m)] ≥ c. Thus, (m− 1)[h(m)− h2(m)] ≥ c
guarantees that the “No Leaving” condition holds.
Next, let us calculate the utility of Agent i from joining an existing Club s. Since G is
m-complete, ∀i′ ∈ NG(s) : |SG+{i,s}(i) ∩ SG+{i,s}(i

′)| = 2. Moreover, since ∀i′ ∈ NG(s) :
w(i, i′, G) = h(m), nG+{i,s}(s) = m+ 1 and h(m) ≥ h(m+ 1), Agent i does not improve any
of her shortest paths by joining Club s. However, she pays c as participation fees. Therefore,
c ≥ 0 guarantees that the “No Joining” condition holds.
Next, let us calculate the utility of Agent i from the formation of a new club by the group
K (i ∈ K,K ⊆ N) and let |K| = k. Note that c ≥ 0 guarantees the “No New Club
Formation” condition for the case of k ≥ m due to similar considerations to those used in
the case of the “No Joining” condition above. For m > k ≥ 2, the utility of Agent i from
the Environment G + K is ui(G + K) = (na − k)h(m) + (k − 1)h(k) − (γ + 1)c. Since
ui(G+K)− ui(G) = (k − 1)h(k)− (k − 1)h(m)− c we get that if c ≥ (k − 1)[h(k)− h(m)]
then ui(G + K) ≤ ui(G). Thus, Agent i will refuse to establish a new club as part of
Group K if and only if c ≥ (k − 1)[h(k)− h(m)]. However, in order to ensure that Agent i
will refuse to establish a new club with any subset of agents it must be that this condition
will hold ∀k ∈ {2, . . . ,m − 1}. Therefore, c ≥ max

k∈{2,...,m−1}
(k − 1)[h(k)− h(m)] guarantees

that the “No New Club Formation” condition holds for k < m. Since ∀k ∈ {2, . . . ,m} :
(k − 1)[h(k)− h(m)] ≥ 0, this condition also ensures that the No Joining condition and the
No New Club Formation condition for the case of k ≥ m hold.
Denote k? = min{arg maxk∈{2,...,m−1} (k − 1)[h(k)− h(m)]}. Note that the condition above

can be rewritten as maxk∈{2,...,m−1} kh(k)− (k − 1)h(m). Let k′ ∈ {k̂ + 1, . . . , na}. By

the definition of k̂, we get kh(k̂) ≥ kh(k
′). In addition, since given an m-Complete en-

vironment h(m) is fixed, we get (k̂ − 1)h(m) ≤ (k′ − 1)h(m). Hence, for every k′ ∈
{k̂ + 1, . . . , na}, we have kh(k̂)− (k̂ − 1)h(m) ≥ kh(k

′)− (k′ − 1)h(m). Therefore, k? ≤ k̂.
This implies that the “No New Club Formation” and the “No Joining” conditions hold if
c ≥ max

k∈{2,...,min{m−1,k̂}}
(k − 1)[h(k)− h(m)].

To complete the proof consider the case where na = m. In this case, G includes one club that
consists of all the agents in the environment. Note that the considerations stated above for
the lower bound hold also when na = m. Thus, if c ≥ max

k∈{2,...,min{na−1,k̂}}
(k − 1)[h(k)− h(na)]

the “No Joining” and the “No New Club Formation” conditions hold. However, the “No
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Leaving” condition is different since if an agent decides to leave the club her utility is zero.
The utility of the agents from G is ui(G) = (na − 1)h(na)− c. Therefore, an agent will not
leave the club as long as (na − 1)h(na) ≥ c. Thus, (na − 1)h(na) ≥ c guarantees that the
“No Leaving” condition holds when na = m.

A.9 Claim 1

A.9.1 Lemma 7

Lemma 7. Let h(·) be an exponential club congestion function where δ ∈ (0, 1
2
). Then,

maxk∈{2,...,m−1} (k − 1)[h(k)− h(m)] = h(2)− h(m).

Proof.

∀l ∈ {2, . . . ,m− 2}, ∀k ∈ {0, . . . ,m− l − 1} :
h(l + k)− h(l + k + 1)

h(l)− h(l + 1)
= δk

Thus,

∀l ∈ {2, . . . ,m− 2} :
m−l−1∑
k=0

h(l + k)− h(l + k + 1)

h(l)− h(l + 1)
=

m−l−1∑
k=0

δk

Or,

∀l ∈ {2, . . . ,m− 2} :
h(l)− h(m)

h(l)− h(l + 1)
=

m−l−1∑
k=0

δk

Since this is a geometric series and since δ ∈ (0, 1
2
), we get

∀l ∈ {2, . . . ,m− 2} :
h(l)− h(m)

h(l)− h(l + 1)
=

1− δm−l

1− δ
<

1

1− δ
< 2

Therefore,

∀l ∈ {2, . . . ,m− 2} : h(l)− h(m) < 2[h(l)− h(l + 1)]

And,

∀l ∈ {2, . . . ,m− 2} : h(l)− h(m) < l[h(l)− h(l + 1)]

Or,

∀l ∈ {2, . . . ,m− 2} : l[h(l + 1)− h(m)] < (l − 1)[h(l)− h(m)]

Therefore, maxk∈{2,...,m−1} (k − 1)[h(k)− h(m)] = h(2)− h(m).

51



A.9.2 The Proof

Proof. Let h(·) be an exponential club congestion function where δ ∈ (0, 1
2
) and a > 0. By

Proposition 4 and Lemma 7, for every na > m, there exists a range of membership fees where
the m-complete environment is OCS if (m− 1)[(a+ δm−1)− (a+ δm−1)2] > δ − δm−1. Note
that the right-hand-side of the inequality is bounded from above by δ < 1

2
. In addition, note

that the left-hand-side of the inequality can be written as

(m− 1)(a− a2) + (1− 2a)(m− 1)δm−1 − (m− 1)δ2(m−1)

Then, (1 − 2a)(m − 1)δm−1 and (m − 1)δ2(m−1) go to zero when m goes to infinity, while,
since a ∈ (0, 1), (m−1)(a−a2) goes to infinity when m goes to infinity. Thus, the left-hand-
side of the inequality is not bounded. Moreover, since the left-hand-side of the inequality is
monotonic from some club size (depends on δ and a) there exists m̄ such that ∀m : m > m̄
the inequality holds. Thus, ∀m : na > m > m̄ there exists a range of membership fees in
which the m-complete environment is OCS.
For similar reasons there exists an integer m̃ such that ∀m : m > m̃ the upper bound is
higher than δ (since δ is greater than the right-hand-side for every m ≥ 2, m̃ ≥ m̄). Let
c̄ = (m̃ − 1)[(a + δm̃−1) − (a + δm̃−1)2]. Thus, in the membership costs range (δ, c̄), every
m-complete environment where m ≥ m̃ is OCS.

A.10 Claim 2

Proof. By Proposition 4 the Grand Club environment is OCS if and only if

c ∈
[

max
k∈{2,...,min{na−1,k̂}}

(k − 1)[h(k)− h(na)], (na − 1)h(na)
]

where k̂ denotes the club size that maximizes the DCV.
Therefore, there exists a range of membership fees in which the Grand Club environment is
OCS if and only if

max
k∈{2,...,min{na−1,k̂}}

(k − 1)[h(k)− h(na)] ≤ (na − 1)h(na)

Or, alternatively, such a range exists if and only if

∀k ∈ {2, . . . ,min{na − 1, k̂}} : (k − 1)[h(k)− h(na)] ≤ (na − 1)h(na)

Using the DCV notation, such a range exists if and only if

∀k ∈ {2, . . . ,min{na − 1, k̂}} : kh(k)− (k − 1)h(na) ≤ kh(na)

Equivalently, there exists a range of membership fees in which the Grand Club environment
is OCS if and only if

∀k ∈ {2, . . . ,min{na − 1, k̂}} : kh(k)− k − 1

na − 1
kh(na) ≤ kh(na)
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Thus, there exists a range of membership fees in which the Grand Club environment is OCS
if and only if

∀k ∈ {2, . . . ,min{na − 1, k̂}} :
na − 1

na + k − 2
× kh(k) ≤ kh(na)

Since for every k ∈ {2, . . . ,min{na − 1, k̂}} we have na−1
na+k−2

< 1, if the DCV is increasing
then the inequality is satisfied. By Lemma 4, if the club congestion function is inelastic the
DCV is strictly increasing, and therefore if the club congestion function is inelastic, a range
of membership fees in which the Grand Club environment is OCS exists.

A.11 Claim 3

Proof. By Lemma 7, the lower bound of the range of membership costs in which the Grand
Club Environment is OCS becomes h(2)− h(na) = δ − δna−1.
When a = 0, the upper bound is (na − 1)h(na) = (na − 1)δna−1. Since na ≥ 4 we can
write na ≤ 2na−2 or 1

na
≥ 1

2na−2 . Using δ ∈ (0, 1
2
) we have 1

na
> δna−2 or 1 > naδ

na−2 or

δ > naδ
na−1. Hence, δ − δna−1 > (na − 1)δna−1, that is the lower bound is always greater

than the upper bound. Thus, for a = 0, δ ∈ (0, 1
2
) and na ≥ 4 the Grand Club Environment

is never OCS.
A range of membership fees for which the Grand Club Environment is OCS exists if and
only if δ − δna−1 ≤ (na − 1)(a + δna−1). That is, there exists a range of membership fees
for which the Grand Club Environment is OCS if and only if (na − 1)a + naδ

na−1 ≥ δ. Let
n̄a = δ

a
+ 1. Then, (n̄a − 1)a = δ, and therefore, for every na > n̄a there exists a range of

membership fees for which the Grand Club Environment is OCS.

A.12 Proposition 5

Proof. Let G =< N,S,A > be an m-Star environment where na > m ≥ 2 and denote the
number of populated clubs in G by γ ≡ na−1

m−1
(we assume that γ is an integer). For simplicity,

we refer to the central agent as Agent b and to the other agents as agents i, i′, etc.
We begin with an upper bound on the range of membership fees where G is OCS. The
upper bound is set by the membership fees above which agents would wish to wave any of
their affiliations. The utility of the central agent from Environment G is ub(G, h, c) = (na −
1)h(m)−γc. Consider Club s. Since all non-central club members have no other affiliations,
no path exists between Agent b and these agents once Agent b leaves Club s. Therefore, for
every {b, s} ∈ A, ub(G−{b, s}, h, c) = (na−m)h(m)− (γ−1)c. Therefore, Agent b will have
no incentive to leave any of her affiliations if and only if (m− 1)h(m) ≥ c. The utility of a
non-central agent i from Environment G is ui(G, h, c) = (m− 1)h(m) + (na −m)h2(m)− c.
Consider Club s such that {i, s} ∈ A. The utility of Agent i after aborting her affiliation
with Club s is zero. Therefore, Agent i will not have an incentive leave the club if and only
if (m− 1)h(m) + (na −m)h2(m) ≥ c. Thus, no agent has an incentive to leave a club in G
if and only if (m− 1)h(m) ≥ c or kh(m) ≥ c.
We continue with the lower bound on the range of membership fees where G is OCS. The
lower bound is set by the membership fees below which agents would wish to form new
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affiliations either by joining a new club or by forming a new club.
We begin by considering the benefits for a subset of agents (K ⊆ N , k = |K|) from forming
a new club (r). Denote by Ks = NG+K(s) ∩NG+K(r) the set of agents that share Club s in
G and are affiliated with the new Club r and denote its magnitude by ks. Denote the set of
clubs represented in K by Q = {s ∈ S : ks > 0} and its magnitude by q.
We first consider the case where the new club is no larger than the existing clubs, k ≤ m.
Each agent in K gets a benefit from the direct connections with the other members in
K. These connections replace either a link with a weight of h(m) (if they share a club
in G) or a path with a weight of h2(m) (if they do not share a club in G). Obviously, an
improvement on an indirect connection is larger than an improvement on a direct connection
(h(k) − h2(m) ≥ h(k)− h(m)). Therefore, non-central agents get the same benefit as the
central agent on links with agents they already share a club with in G and higher benefit
than the central agent on links with agents they do not share a club with in G. Thus, in the
case where b ∈ K, since the utility from environment G+K to Agent b is ub(G+K,h, c) =
(k−1)h(k)+(na−k)h(m)−(γ+1)c we get that c ≥ maxm≥k≥2 (k − 1)(h(k)− h(m)) prevents
the formation of K since it does not benefit Agent b. For the case where b /∈ K we begin
by considering the case where the size of the new club is not greater than the original club
size and the original number of clubs (m ≥ k and γ ≥ k). Note that on top of the improved
direct connections that each agent in K gets, the partners with whom she did not share a
club with in G supply her with improved indirect paths to the agents in their original clubs
that do not participate in K. These paths are better than the paths supplied in G by the
central agent, since the new club is small (k ≤ m). The utility from Environment G+K for
Agent i such that {i, s} ∈ A, b /∈ K and i ∈ K is

ui(G+K,h, c) =(k − 1)h(k) + (m− ks)h(m) + ((q − 1)(m− 1)− (k − ks))h(k)h(m)

+ (γ − q)(m− 1)h2(m)− 2c

For every Agent i and every m, h(·), c, q and k, ui(G + K,h, c) is maximized if ks = 1.46

Thus, the utility of Agent i from K is maximized if no other member in this club shares her
original club in G. The utility of Agent i ((i, s) ∈ A) from G+K when K includes no other
agent from Club s is

ui(G+K,h, c) =(k − 1)h(k) + (m− 1)h(m) + ((q − 1)(m− 1)− (k − 1))h(k)h(m)

+ (γ − q)(m− 1)h2(m)− 2c

In addition, to maximize ui(G + K,h, c) given m, h(·), c and k, q should be as high as
possible.47 Thus, the utility of Agent i from a new club where q = k (no pair of agents in

46 ∂ui(G+K)
∂ks

= −h(m) + h(k)h(m) = −h(m)(1 − h(k)) ≤ 0. Since q and k are held fixed, increasing ks
by 1 means that Agent j′ of Club s′ (ks′ > 1 since q is fixed) is replaced in K by a member j of Club s
(j /∈ {i, b}). The gain from this change is the improved path to Agent j (h(k)− h(m)) while the loss is the
longer path to j′ (h(k)h(m)− h(k)). Thus, the net benefit is −h(m) + h(k)h(m).

47 ∂ui(G+K)
∂q = (m − 1)h(k)h(m) − (m − 1)h2(m) ≥ 0 (equality is achieved if and only if k = m). Since

k is held fixed, increasing q by 1 means that Agent j′ of Club s′ (ks′ > 1) is replaced in K by a member j
of Club s that was not represented in K. The gain from this change is the paths to Agent j and her club
members (h(k) + (m−2)h(k)h(m)− (m−1)h2(m)) while the loss is the longer path to j′ (h(k)h(m)−h(k)).
Thus, the net benefit is (m− 1)(h(k)h(m)− h2(m)).
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the new club share a club in G) is

ui(G+K,h, c) =(k − 1)h(k) + (m− 1)h(m) + ((k − 1)(m− 1)− (k − 1))h(k)h(m)

+ (γ − k)(m− 1)h2(m)− 2c

Therefore, the non-central agents have no incentive to form a new club of size min{m, γ} ≥ k
if

c ≥ max
min(γ,m)≥k≥2

(k − 1)[h(k) + (m− 2)h(k)h(m)− (m− 1)h2(m)]

To complete the case of k ≤ m, we consider the case of a new club of size m ≥ k > γ that
does not include the central agent. Suppose q < γ. Then, there is a non-empty Club s in G
such that ks = 0. In this case, in G+K, ∀i ∈ K there are some indirect paths with weight
h(k)h(m) and some indirect paths with weight h2(m). Alternatively, suppose q = γ. For
every no non-empty club s in G, ks > 0. Then, ∀i ∈ K the direct links are the same as in
the previous case, but all the indirect paths are of weight h(k)h(m). Clearly, for each agent,
the incentives to form a new club are weakly stronger when q = γ.
The utility from Environment G + K to Agent i who participates in Club s and in Group
K where q = γ (b /∈ K) is

ui(G+K) = (k − 1)h(k) + (m− ks)h(m) + (na −m− (k − ks))h(k)h(m)− 2c

Given m, h(·) and c, ui(G + K) increases when ks decreases (see Footnote 46). Thus, the
most attractive K is the one that minimizes the maximal ks (over all s ∈ S) where q = γ.
In this new optimal club maxs,s′∈S |ks − ks′| ≤ 1 and the agents that belong to the original
clubs with the higher ks have lower utility. Denote the optimal ks by ηk ≡ dkγ e. Then, the

utility of i ∈ K that belongs to the original Club s ∈ {s ∈ S|∀s′ ∈ S, ks ≥ ks′} is

ui(G+K) = (k − 1)h(k) + (m− ηk)h(m) + (na −m− (k − ηk))h(k)h(m)− 2c

Thus, the membership fees required to prevent the formation of a new club of size k where
γ < k ≤ m are

c > max
m≥k>γ

(k − 1)h(k)− (ηk − 1)h(m) + (na −m− (k − ηk))h(k)h(m)− (na −m)h2(m)

It is easy to see that the membership fees required to prevent the formation of a new club of
size k ≤ m are higher when the central agent is not included in the group. Denote the fees
required to prevent a deviation to a club of size k when m ≥ k and γ ≥ k,

FNSh(k,m) = (k − 1)[h(k) + (m− 2)h(k)h(m)− (m− 1)h2(m)]

and the fees required to prevent a deviation to a club of size k when m ≥ k and k > γ,

FNIh(k,m, na) = (k − 1)h(k)− (ηk − 1)h(m) + (na −m− (k − ηk))h(m)h(k)− (na −m)h2(m)

Therefore, we can conclude that the minimal membership fees required to prevent the forma-
tion of a new club that is no larger than the existing clubs, k ≤ m, depends on the relation
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between m and γ.
If m > γ

c ≥ max{max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m, na)}

while if γ ≥ m

c ≥ max
m≥k≥2

FNSh(k,m)

Note that when k > m there are no gains to the members of the new club from shorter indirect
paths. In addition, they have no gains from the members of the new club with whom they
already share a club in G (therefore the central agent can never benefit from participating
in clubs of size k > m). Moreover, if h2(m) ≥ h(k) there are no gains also from the other
members of the new club. Thus, no new club of size k ≥ lh will be formed where lh = min{k ∈
Z|h(k) ≤ h2(m)}. However, the net gains for a non-central Agent i, that belongs to Club s in
Environment G, from establishing a new club of size min{lh, na} > k > m are (k−ks)(h(k)−
h2(m)) − c. Since there is at least one agent in K for which ks ≥ ηk, she would refuse to
deviate if c > (k − ηk)(h(k)− h2(m)). Denote the fees required to prevent a deviation to
a club of size k when min{lh, na} > k > m by FNLh(k,m, na) = (k − ηk)(h(k)− h2(m)).
Thus, the minimal membership fees required to prevent the formation of a new club are
If m > γ

c ≥ max{ max
γ≥k≥2

FNSh(k,m, na), max
m≥k>γ

FNIh(k,m, na),

max
min{lh,na}>k>m

FNLh(k,m, na)}

while if γ ≥ m

c ≥ max{ max
m≥k≥2

FNSh(k,m, na), max
min{lh,na}>k>m

FNLh(k,m, na)}

Finally, we analyse the incentive to join a new club. Agent b is irrelevant since she is already
present in all the populated clubs. A non-central Agent i who joins an existing Club s
shortens her paths to the members of this club (excluding the center) while she pays the
membership fees (and intensifies the congestion in Club s). The utility of Agent i from
environment G+ {i, s} (where {i, s} /∈ A and nG(s) ≥ 2) is

ui(G+ {i, s}, h, c) = (m− 1)h(m) + (m− 1)h(m+ 1) + (na − 2m+ 1)h2(m)− 2c

Therefore, the net benefit for Agent i from joining an existing club s is (m − 1)[h(m +
1) − h2(m)] − c. Thus, no agent wishes to join a new club in G if and only if c ≥
(m− 1)[h(m+ 1)− h2(m)]. Denote Jh(m) = (m− 1)[h(m+ 1)− h2(m)].
Note that FNSh(m,m) = (m − 1)(h(m) − h2(m)) and therefore FNSh(m,m) ≥ Jh(m).
Thus, the lower bound on the membership are
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If m > γ

c ≥ max{ max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m, na),

max
min{lh,na}>k>m

FNLh(k,m, na), Jh(m)}

while if γ ≥ m

c ≥ max{ max
m≥k≥2

FNSh(k,m), max
min{lh,na}>k>m

FNLh(k,m, na)}

A.13 Claim 4

Proof. First note that since na > 2 and m = 2, the number of clubs is never smaller than m
and therefore only the first part of Proposition 5 is relevant for the 2-Star Environment.
Let us begin with Part 1. When m = 2 we get kh(2) = h(2) as the upper bound. For the
lower bound only FNSh(2, 2) and FNLh(k, 2, na) for k ∈ {2, . . . ,min{lh − 1, na − 1}} are
relevant. FNSh(2, 2) = h(2)−h2(2). Since m = 2 and k ≤ na − 1, we get ηk = 1. Therefore,
FNLh(k, 2, na) = (k − 1)(h(k) − h2(2)). The 2-Star Environment is therefore OCS if and
only if

h(2) ≥ c ≥ max
k∈{2,...,min{lh−1,na−1}}

(k − 1)(h(k)− h2(2))

Next, by Lemma 4, since the club congestion function is elastic then kh(·) is strictly decreas-
ing. Note that (k − 1)(h(k)− h2(2)) = kh(k) − (k − 1)h2(2). Thus, the first part decreases
with k while the second part increases with k, meaning that (k − 1)(h(k)− h2(2)) is max-
imized by k = 2. Therefore, since h(·) is an elastic club congestion function, the 2-Star
Environment is OCS if and only if h(2) ≥ c ≥ h(2)− h2(2).
The reciprocal club congestion function implies that (k − 1)(h(k)− h2(2)) equals 1 − (k −
1)h2(2) = 1 − (k − 1) = 2 − k. Thus, using Part 1, if h(·) is the reciprocal club congestion
function, the 2-star environment is OCS if and only if c ∈ [0, 1].
Finally, suppose that h(·) is an exponential club congestion function. A straight forward
application of Part 1 suggests that the 2-Star Environment is OCS if and only if

a+ δ ≥ c ≥ max
k∈{2,...,min{lh−1,na−1}}

(k − 1)((a+ δk−1)− (a+ δ)2)

It is easy to see that when a = 0 the upper bound becomes δ. Since a = 0 implies that
lh = 3, the lower bound becomes δ − δ2. Therefore, if a = 0 then the 2-Star Environment is
OCS if and only if c ∈ [δ − δ2, δ].

A.14 Corollary 1

Proof. h(3) < h2(2) implies that h(2)− h2(2) < h(2)− h(3). Thus, as our previous analysis
indicates, the All-paired Environment is the unique OCS if and only if c ∈ (0, h(2)− h2(2))
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while when c > (h(2) − h2(2)) the All-Paired Environment is not OCS. By Proposition
4 the lower bound of the range of membership fees for which the 3-Complete Environ-
ment is OCS is h(2) − h(3). Therefore, the 3-Complete Environment is not OCS for
c ∈ (h(2) − h2(2), h(2) − h(3)). h(3) < h2(2) implies that lh = 3. Therefore, by Claim
4 the 2-Star Environment is OCS if and only if c ∈ [h(2) − h2(2), h(2)]. As a result, the
2-Star Environment is OCS when c ∈ (h(2)− h2(2), h(2)− h(3)).
h(3) = h2(2) implies that h(2) − h2(2) = h(2) − h(3). First, let us show that h(2) >
2[h(3) − h2(3)] > h(2) − h2(2). We begin with the left inequality. Since the maximal value
of f(x) = x − x2 is 1

4
, 2[h(3) − h2(3)] ≤ 1

2
and this inequality is correct for h(2) > 1

2
. In

addition, since f(x) = x− x2 is strictly increasing in x ∈ [0, 1
2
], h(2)− h2(2) > h(3)− h2(3)

when h(2) ≤ 1
2
. Thus, h(2)−h(3) = h(2)−h2(2) > h(3)−h2(3) > h(3)−2h2(3). Therefore,

also for h(2) ≤ 1
2
, h(2) > 2[h(3)− h2(3)]. Next we show that 2[h(3)− h2(3)] > h(2)− h2(2).

Since f(x) = x − x2 is strictly decreasing in x ∈ [1
2
, 1], when 1 > h(2) > h(3) ≥ 1

2
we

get 2[h(3) − h2(3)] > h(3) − h2(3) > h(2) − h2(2). In addition, when 1
2
≥ h(3) ≥ 0.15 we

get 2[h(3) − h2(3)] > 1
4
≥ h(2)− h2(2) where the first inequality is since h(3) ≥ 0.15 and

f(x) = x− x2 is increasing below x = 1
2
. The second inequality is correct since the maximal

value of f(x) = x−x2 is 1
4
. As our previous analysis indicates the All-Paired Environment is

the unique OCS if and only if c ∈ (0, h(2)−h2(2)) and it is not OCS when c > h(2)−h2(2).
By Proposition 4 the upper bound of the range of membership fees for which the 3-Complete
Environment is OCS is 2[h(3) − h2(3)] and the lower bound is h(2) − h(3) = h(2) − h2(2).
Since lh = 3, by Claim 4 the 2-Star Environment is OCS if and only if c ∈ [h(2)−h2(2), h(2)].
h(3) > h2(2) implies that h(2) − h2(2) > h(2) − h(3). Also, recall from the previous
part that 2[h(3) − h2(3)] > h(2) − h2(2) when 1 ≥ h(3) ≥ 0.15. As our previous analy-
sis indicates the All-Paired Environment is the unique OCS if and only if c ∈ (0, h(2) −
h(3)), it is OCS (but not unique) when c ∈ [h(2) − h(3), h(2) − h2(2)] and it is not OCS
when c > h(2) − h2(2). By Proposition 4 the 3-Complete Environment is OCS when
c ∈ [h(2) − h(3), h(2) − h2(2)] and when c ∈ [h(2)− h2(2), 2(h(3) − h2(3))]. By Claim
4, the lower bound of the range of membership fees for which the 2-Star Environment is
OCS is max

k∈{2,...,min{lh−1,na−1}}
(k − 1)(h(k)− h2(2)). Since for k = 2, (k − 1)(h(k) − h2(2)) =

h(2)−h2(2) it is guaranteed that for c < h(2)−h2(2) the 2-Star Environment is not OCS.

A.15 Claim 5

Proof. Since na ≥ 9 then γ ≥ 4 > 3, so that only the first part of Proposition 5 is relevant.
First, let h(m) = 1

m−1
. Note that lh = 5. Thus, the 3-Star Environment is OCS if and only

if

2h(3) ≥ c ≥ max{h(2) + h(2)h(3)− 2h2(3), 2[h(3)− h2(3)], 3[h(4)− h2(3)]}

and using the functional form we get 1 ≥ c ≥ max{1, 1
2
, 1

4
} and therefore the 3-Star Envi-

ronment is OCS if and only if c = 1.
Next, let h(m) = δm−1 for δ ∈ (0, 1). Note that again lh = 5. Thus, again the 3-star
environment is OCS if and only if

2h(3) ≥ c ≥ max{h(2) + h(2)h(3)− 2h2(3), 2[h(3)− h2(3)], 3[h(4)− h2(3)]}
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and using the functional form the 3-Star Environment is OCS if and only if

2δ2 ≥ c ≥ max{δ + δ3 − 2δ4, 2δ2 − 2δ4, 3δ3 − 3δ4}

Note that since δ ∈ (0, 1) it must be that δ(1 − δ)2 > 0. Therefore, δ + δ3 > 2δ2 and
δ + δ3 − 2δ4 > 2δ2 − 2δ4. Meaning that the 3-Star Environment is OCS if and only if

2δ2 ≥ c ≥ max{δ + δ3 − 2δ4, 3δ3 − 3δ4}

Note that since δ ∈ (0, 1) it must be that δ2(2 − δ) < 1.48 Therefore, 2δ2 − δ3 < 1 or
2δ3 − δ4 < δ or 3δ3 − δ4 < δ + δ3 or 3δ3 − 3δ4 < δ + δ3 − 2δ4. Meaning that the 3-Star
Environment is OCS if and only if

2δ2 ≥ c ≥ δ + δ3 − 2δ4

Note that given that δ ∈ (0, 1) then (δ2 + 1)(2δ − 1) ≥ 0 if and only if δ ∈ [1
2
, 1). Thus,

2δ3 − δ2 + 2δ ≥ 1 if and only if δ ∈ [1
2
, 1). And, 2δ4 − δ3 + 2δ2 ≥ δ if and only if δ ∈ [1

2
, 1).

Meaning that 2δ2 ≥ δ + δ3 − 2δ4 if and only if δ ∈ [1
2
, 1). Thus, since the 3-Star Environment

is OCS if and only if c ∈ [δ + δ3 − 2δ4, 2δ2], there is a range of membership fees for which it
is OCS if and only if δ ≥ 1

2
.

A.16 Proposition 6

Proof. Let G be the Grand Club Environment with na agents. The utility of each agent
in G is ui(G, c, b) = (na − 1)b2(1) − c > 0. Note that no agent can achieve more than
(na − 1)b2(1) − c since the gains are maximal and the fees are minimal. Thus, the Grand
Club Environment is PE. To show that it is the unique PE environment it suffices to show
that every other environment includes at least one agent that obtains strictly lower utility.
Obviously, the Empty Environment is not PE. If an environment includes a single populated
club, and it is not the Grand Club Environment, then there is at least one agent with no
affiliations, and therefore zero utility. Hence there is no PE environment, other than the
Grand Club Environment, which includes at most one populated club. Next, consider a
disconnected environment that includes at least two populated clubs. Then, no agent is
connected to all other agents and therefore the maximal possible utility is (na − 2)b2(1)− c
which is strictly smaller than (na − 1)b2(1)− c. Hence, no disconnected environment is PE.
Finally, consider a connected environment that includes at least two clubs. Then, there
exists at least one agent that is a member of more than one club, and therefore her max-
imal utility is (na − 1)b(2)b(1) − 2c which is strictly smaller than (na − 1)b2(1) − c since
max{b(1)− b(2), c} > 0. Hence, no environment other than the Grand Club Environment is
PE. Thus, the Grand Club Environment is the unique PE and therefore also the unique SE,
and the proof of Part 1a is completed.
To prove Part 1b note that no agent i wants to leave the club since ui(G, c, b) = (na −
1)b2(1)− c > 0 by keeping her membership and zero by leaving the club. The “No Joining”
condition is vacuously satisfied since there are no other populated clubs. Finally, no subset

48δ2(2− δ) has a local maximum at 4
3 , a local minimum at 0 and its value at δ = 1 is 1.
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of agents want to form a new club, since by being members of two clubs, their utility drops
to ui(G+m, c, b) = (k − 1)b2(2) + (na − k)b(1)b(2)− 2c where k is the number of agents in
m. Hence, the Grand Club Environment is OCS.
For any membership fees, no agent with at least one affiliation can achieve more than
(na − 1)b2(1) − c since the gains are maximal and the fees are minimal. Thus, when
c > (na − 1)b2(1) every agent with at least one affiliation must have negative utility. Thus,
the Empty Environment is the unique PE and therefore also the unique SE, and the proof
of Part 2a is completed.
To prove Part 2b note that forming a new club can provide each agent with at most
ui(G, c, b) = (na − 1)b2(1) − c. Since c > (na − 1)b2(1) no subset of agents wishes to form
a new club. The “No Joining” and “No Leaving” conditions are vacuously satisfied since
there are no populated clubs. Finally, since the maximal utility of an agent in this model is
ui(G, c, b) = (na− 1)b2(1)− c, then when c > (na− 1)b2(1) in every non-empty environment
there exists an agent that wishes to leave any of her affiliations. Therefore, every non-empty
environment is not OCS. Hence, the Empty Environment is the unique OCS environment
when c > (na − 1)b2(1).
Part 3a is a direct conclusion from the uniqueness of the Empty Environment when c >
(na − 1)b2(1) (Part 2b) and from the stability of the Grand Club Environment when c ≤
(na − 1)b2(1) as demonstrated in Part 1b (when c = (na − 1)b2(1) the Grand Environment
is OCS, PE and SE, but the unique efficiency is lost).
To prove Part 3b, for every G and for every c ∈ [0, na− 1), we find an individual congestion
function b(·) such that G is not OCS while the Grand Club Environment with na agents is
OCS. Suppose G is the Empty Environment and let b(1) >

√
c

na−1
(since c ∈ [0, na−1) such

b(1) always exists). Then, a deviation to form a new club that consists all agents is worth-
while and G is not OCS. Since (na − 1)b2(1) > c, by Part 1b the Grand Club Environment
is OCS.
Let G be an environment where every agent maintains exactly one affiliation and there is
more than one populated club (i.e. Partitioned Environment which is not the Grand Club
Environment). Let s be one of the populated clubs in G, denote |s| = l (na − 1 > l > 1)
and suppose that Agent i is a member of s. For the case where c > 0 note that for ev-
ery individual congestion function where

√
c

na−1
< b(1) < min{1,

√
c
l−1
} (such b(1) ex-

ists since na − 1 > l and c ∈ [0, na − 1)) we get ui(G, c, b) = (l − 1)b2(1) − c < 0 and
therefore Agent i would find leaving Club s worthwhile and G is not OCS. However, since
c < (na− 1)b2(1) by Part 1b the Grand Club Environment is OCS. For the case where c = 0
note that ui(G, 0, b) = (l − 1)b2(1). If Agent i joins another existing populated club s′ of
size |s′| = k > 1 her utility is ui(G + {i, s′}, 0, b) = (k + l − 1)b(2)b(1). Note that for every
individual congestion function such that b(1) > b(2) > b(1)(1 − 1

na−1
) it is worthwhile for

Agent i to join club s′ since it means that b(2) > b(1)(1 − k
k+l−1

) (recall that k > 1 and
k + l ≤ na) which guarantees that (k + l − 1)b(2)b(1) > (l − 1)b2(1). Thus, we found an
individual congestion function such that no Partitioned Environment with more than one
populated club is OCS if c = 0. However, by Part 1b the Grand Club environment is OCS.
Now let G be an environment where every agent maintains at most one affiliation and there
is at least one isolated agent. Let s be one of the populated clubs in G, denote |s| = l
(na > l > 1) and suppose that Agent i is a member of s. For the case where c > 0 note
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that for every individual congestion function where
√

c
na−1

< b(1) < min{1,
√

c
l−1
} (such

b(1) exists since na > l and c ∈ [0, na − 1)) we get ui(G, c, b) = (l − 1)b2(1) − c < 0 and
therefore Agent i would find leaving Club s worthwhile and G is not OCS. However, since
c < (na−1)b2(1) by Part 1b the Grand Club Environment is OCS. For the case of c = 0, such
an environment is never OCS since the isolated agent wishes to join any of the clubs (recall
that b(1) > 0). Hence, G is not OCS. However, by Part 1b the Grand Club Environment is
OCS.
Next, suppose that G includes at least one agent with more than one affiliation. With no loss
of generality assume that Agent i is the agent with the highest number of affiliations and she

maintains k > 1 memberships. Her utility is ui(G) =
∑

j∈N,j 6=i

d(i, j|G)− kc. Notice that the

weight of every path between Agent i and another agent must be a multiplication of b(k).

Thus, let us denote d(i, j|G) = b(k)d−i(i, j|G) and therefore ui(G) = b(k)
∑

j∈N,j 6=i

d−i(i, j|G)−

kc. For Agent i, leaving Club s ∈ SG(i) is beneficial if ui(G) < ui(G− {i, s}) or

b(k)
∑

j∈N,j 6=i

d−i(i, j|G)− kc < b(k − 1)
∑

j∈N,j 6=i

d−i(i, j|G− {i, s})− (k − 1)c

A sufficient condition for this inequality to hold is

b(k)
∑

j∈N,j 6=i

d−i(i, j|G) < b(k − 1)
∑

j∈N,j 6=i

d−i(i, j|G− {i, s})

Or,

b(k) < b(k − 1)

∑
j∈N,j 6=i d−i(i, j|G− {i, s})∑

j∈N,j 6=i d−i(i, j|G)

Denote,

F =

∑
j∈N,j 6=i d−i(i, j|G− {i, s})∑

j∈N,j 6=i d−i(i, j|G)
≤ 1

Since k > 1, by leaving Club s Agent i is not isolated and
∑

j∈N,j 6=i

d−i(i, j|G− {i, s}) > 0.

Hence, for every individual congestion function such that b(k) is smaller than b(k − 1)× F ,
G is not OCS for any membership fees. Obviously, such an individual congestion function
exists. In addition, let us set b(1) = 1. Then by Part 1b the Grand Club Environment with
the same number of agents is OCS.
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A.17 Proposition 7

A.17.1 Lemma 8

Lemma 8. Let G =< N,S,A >. In the individual congestion model if SG(j) ∩ SG(i) 6= ∅
then d(i, j|G, b) = b(sG(i))× b(sG(j)).

Proof. Note that the weight of every indirect path between Agent i and Agent j would
be of the form b(sG(i)) × · · · × b(sG(j)). If Agent i and Agent j are directly connected
(since they share the same club), the value of the link between them in the induced network
is b(sG(i)) × b(sG(j)). Since b(·) is bounded from above by 1, then it must be that the
direct link is the shortest path between Agent i and Agent j and therefore d(i, j|G, b) =
b(sG(i))× b(sG(j)).

A.17.2 Lemma 9

Lemma 9. Let G =< N,S,A >, let m ⊆ N and let i ∈ m. In the Individual Congestion
model, if ∀j ∈ m: SG(j) ∩ SG(i) 6= ∅ then for every individual congestion function b(·),
ui(G, b, c) ≥ ui(G+m, b, c) and the inequality is strict for c > 0.

Proof. In the individual congestion model, forming a new club is costly and weakly decreases
the weights on the existing links of the members of the new club. Hence, a new club may
improve the utility of the deviating agents only by forming shorter paths. Now, consider
the formation of a new club by the set m and specifically Agent i ∈ m such that ∀j ∈ m:
SG(j) ∩ SG(i) 6= ∅.
First, let us consider the connections between Agent i and Agent k ∈ m. By Lemma 8 the
shortest path between Agent i and Agent k in both G and G + m is their direct link and
since both have an additional affiliation in G+m we get d(i, k|G, b) ≥ d(i, k|G+m, b).
Now, let us consider the connections between Agent i and Agent k /∈ m. Denote by P (i, k|G)
the shortest path between Agent i and Agent k in Environment G. Suppose that P (i, k|G) 6=
P (i, k|G+m). If the path P (i, k|G + m) was available in G then its weight must have
been not greater than d(i, k|G, b) (otherwise P (i, k|G + m) would have been the shortest
path in G). Since the weights on the links did not increase in G + m, it must be that
d(i, k|G, b) ≥ d(i, k|G+m, b). Next, we show that a path P (i, k|G+m) that was not available
in G can never be a shortest path in G + m. Suppose, in negation, that P (i, k|G + m) was
not available in G but is a shortest path in G + m. Then, it must be that at least one of
its links is new, meaning it is a link between two agents in m\{i} - Agent j1 and Agent
j2. However, since Agent i is directly linked with both Agent j1 and Agent j2 in G + m,
by Lemma 8 a shorter path exists. contradiction. Thus, also for Agent k /∈ m we get
d(i, k|G, b) ≥ d(i, k|G+m, b).
Thus, the formation of a new club by the set m that includes an Agent i ∈ m such that
∀j ∈ m: SG(j) ∩ SG(i) 6= ∅ does not improve any of her links. Hence,∑

j∈N,j 6=i

d(i, j|G, b) ≥
∑

j∈N,j 6=i

d(i, j|G+m, b)
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And if c > 0,∑
j∈N,j 6=i

d(i, j|G, b)− sG(i)× c >
∑

j∈N,j 6=i

d(i, j|G+m, b)− (sG(i) + 1)× c

Thus, we conclude that ui(G, b, c) ≥ ui(G+m, b, c) and the inequality is strict for c > 0.

A.17.3 Lemma 10

Lemma 10. Let G =< N,S,A >, let s ∈ S and let i /∈ s. In the Individual Congestion
model, if ∀j ∈ s: SG(j) ∩ SG(i) 6= ∅ then for every individual congestion function b(·),
ui(G, b, c) ≥ ui(G+ {i, s}, b, c) and the inequality is strict for c > 0.

Proof. In the individual congestion model, joining an existing club is costly and weakly
decreases the weights of the agent. Hence, joining a club may improve the utility of the
agent only by forming shorter paths. Since ∀j ∈ s: SG(j) ∩ SG(i) 6= ∅ the network induced
by G+{i, s} have the same links as the network induced by G. Moreover, the weights on the
links in the network induced by G+ {i, s} are smaller or equal to the corresponding weights
in G. Thus, for every agent k we get d(i, k|G, b) ≥ d(i, k|G+ {i, s}, b). Hence,∑

j∈N,j 6=i

d(i, j|G, b) ≥
∑

j∈N,j 6=i

d(i, j|G+ {i, s}, b)

And if c > 0,∑
j∈N,j 6=i

d(i, j|G, b)− sG(i)× c >
∑

j∈N,j 6=i

d(i, j|G+m, b)− (sG(i) + 1)× c

Thus, ui(G, b, c) ≥ ui(G+ {i, s}, b, c) and the inequality is strict for c > 0.

A.17.4 The Proof

Proof. Since every agent in an m-Complete environment shares a club with any other agent,
by Lemma 10, for every individual congestion function b(·) and for every membership fees,
ui(G, b, c) ≥ ui(G+ {i, s}, b, c). Hence, no agent wants to join an existing club. For the same
reason, by Lemma 9, for every individual congestion function b(·) and for every membership
fees, no subset of agents wishes to form a new club.
Thus, m-Complete environments are not OCS if and only if there is an agent that wishes to
leave any of her clubs. The utility of Agent i from an m-Complete environment given the
individual congestion function b(·) and membership fees c ≥ 0 is

ui(G, b, c) = (na − 1)b2(γ)− γ × c

Recall that na > m, meaning that by leaving a club m − 1 direct connections are replaced
with indirect connections but all the remaining links of the agent are of higher quality and
the total membership fees are lower. Specifically,

ui(G− {i, s}, b, c) = (na −m)b(γ)b(γ − 1) + (m− 1)b3(γ)b(γ − 1)− (γ − 1)× c
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Thus, m-Complete environments are OCS if and only if

(na − 1)b2(γ)− γ × c ≥ (na −m)b(γ)b(γ − 1) + (m− 1)b3(γ)b(γ − 1)− (γ − 1)× c

Or,

(na −m)b(γ)[b(γ)− b(γ − 1)] + (m− 1)b2(γ)[1− b(γ − 1)b(γ)] ≥ c

Since we are only interested in positive membership fees, an m-complete environment is OCS
if and only if

c ∈
[
0, (na −m)b(γ)[b(γ)− b(γ − 1)] + (m− 1)b2(γ)[1− b(γ − 1)b(γ)]

]

A.18 Proposition 8

A.18.1 Lemma 11

Lemma 11. In the model with club congestion and individual congestion where h(2) = 1,
∀m > 2 : h(m) = 0, b(k) = 1

2
[1 + 1

k
], D = 1 and c = 1

4
, ∀g ∈ Gn,∀i ∈ N : ui(Gg) =

1
4
× uCAi (g).

Proof. For every un-weighted network g =< N, Ē >, the induced network of Gg denoted by
g =< N,E,W > is such that E = Ē and, by the choice of h(·) and b(·), each link between
Agent i and Agent j has a weight of 1

4
[1 + 1

ni
][1 + 1

nj
] or 1

4
× [ 1

ni
+ 1

nj
+ 1

ninj
] + 1

4
. Since D = 1

the agents benefit from direct connections only. Moreover, since the membership costs are
1
4
, the net utility of Agent i from the link to her club partner (and network neighbor) Agent
j, is 1

4
× [ 1

ni
+ 1

nj
+ 1

ninj
]. Obviously, the net utility of Agent i from non-neighbors is zero.

As a consequence, summing over all agents, ui(Gg) = 1
4
× uCAi (g).

A.18.2 The Proof

Proof. We suppose that g ∈ CA(n) and show that Gg ∈ OCS(1
4
, n, h, b, 1). The “No Join-

ing” condition holds since the utility from a club of size 3 is zero while the participation fees
are positive. For the same reason, no coalition of size greater than two wishes to form a new
club.
Next, consider two agents, i and j, that do not share a club in Gg. Then, by construction,
Agent i and Agent j are not linked in g. Since g is pairwise stable, if uCAi (g) < uCAi (g + {i, j})
then uCAj (g) > uCAj (g + {i, j}). Alternatively, if 1

4
× uCAi (g) < 1

4
× uCAi (g + {i, j}) then

1
4
× uCAj (g) > 1

4
× uCAj (g + {i, j}). By Lemma 11, if ui(Gg) < ui(Gg+{i,j}) then uj(Gg) >

uj(Gg+{i,j}). Denote by mij the coalition that includes only agents i and j. Then, note that
Gg+{i,j} is identical to Gg +mij since both denote the addition of Club s that includes agents
i and j to Environment Gg. Hence, if ui(Gg) < ui(Gg +mij) then uj(Gg) > uj(Gg +mij).
Therefore, no coalition of size two wishes to form a new club and the “No New Club Forma-
tion” condition holds.
For the “No Leaving” condition, consider Agent i that participates, together with Agent j,
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in Club s in Gg. Then, by construction, Agent i and Agent j are linked in g. Since g is
pairwise stable uCAi (g) ≥ uCAi (g − {i, j}). Alternatively, 1

4
× uCAi (g) ≥ 1

4
× uCAi (g − {i, j}).

By Lemma 11, ui(Gg) ≥ ui(Gg−{i,j}). By Lemma 6, ui(Gg) ≥ ui(Gg − {i, s}), meaning that
this condition also holds. Therefore, Gg ∈ OCS(1

4
, n, h, b, 1).

For the other direction, we suppose that Gg ∈ OCS(1
4
, n, h, b, 1) and show that g ∈ CA(n).

First, consider Agent i that is linked with Agent j in g. By construction Agent i partici-
pates, together with Agent j, in Club s in Gg. Since Gg is OCS, ui(Gg) ≥ ui(Gg − {i, s}). By
Lemma 6, ui(Gg) ≥ ui(Gg−{i,j}). By Lemma 11, 1

4
× uCAi (g) ≥ 1

4
× uCAi (g − {i, j}). Thus,

uCAi (g) ≥ uCAi (g − {i, j}), meaning that no agent wishes to discard an existing link. Next,
consider two agents, i and j, that are not linked in g. By construction agents i and j do not
share a club in Gg. Since Gg is OCS, if ui(Gg) < ui(Gg +mij) then uj(Gg) > uj(Gg +mij).
But, as mentioned above, Gg+{i,j} is identical to Gg+mij. Therefore, if ui(Gg) < ui(Gg+{i,j})
then uj(Gg) > uj(Gg+{i,j}). By Lemma 11, if 1

4
× uCAi (g) < 1

4
× uCAi (g + {i, j}) then

1
4
× uCAj (g) > 1

4
× uCAj (g + {i, j}). Thus, if uCAi (g) < uCAi (g + {i, j}) then uCAj (g) >

uCAj (g + {i, j}), meaning that no pair of agents wishes to form a new link. Therefore,
g ∈ CA(n) and the proof of the first part is completed.
For the second part note that since we assume that Gn includes only environments with
distinct clubs, every environment G ∈ Gn\GGn includes at least one populated club of size
greater than two. However, every agent that participates in a club of size greater than two
wishes to leave the club since its benefits are zero (all induced links of such club are of weight
zero) while the membership fees are positive. Therefore, G /∈ OCS(1

4
, n, h, b, 1).

B DCV and Elasticity

B.1 The DCV of the Exponential Congestion Function

Lemma B.1 summarizes the club size that maximizes the DCV for various sets of param-
eters of the exponential congestion function. Some technical notations are required: De-
note b(δ, na) = 1

na−2
(δ − (na − 1)δna−1) and let δ?(na) be the unique δ ∈ (0, 1) such that

b(δ, na) = δ(1− 2δ) and let δ̂(na) be the unique δ ∈ (0, 1) such that b(δ, na) = 0.

Lemma B.1. Let na ≥ 4 and let h(m) be an exponential club congestion function.

1. The club size that maximizes the DCV weakly increases with a.

2. If a ∈ [0,min{b(δ, na), δ(1− 2δ)}) then the DCV is maximized at m = 2.

3. If δ ∈ (0, δ?(na)) and a ∈ (b(δ, na), 1− δ) then the DCV is maximized at m = na.

4. If δ ∈ (δ?(na), δ̂(na)) and a ∈ (max{0, δ(1− 2δ)}, b(δ, na)) then the DCV is maximized
at m ∈ {3, . . . , na − 1}.

5. If δ ∈ [1
2
, 1− 1

na−1
] and a = 0 then the DCV is maximized either at m =

⌊
1− 1

ln δ

⌋
or

at m =
⌈
1− 1

ln δ

⌉
.

6. If δ ∈ (1− 1
na−1

, 1) then the DCV is maximized at m = na.
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Figure 8: Lemma B.1 for na = 10. Each number lies within the area characterized by the
corresponding statement in the lemma.

The case where a = 0 demonstrates the opposing effects of the club size on the DCV. When
the number of agents in the club increases, congestion increases (for every δ) but more direct
links are formed in the club (the multiplicative effect). We use Lemma 4 to show that when
δ < 1

2
the congestion effect is dominant and the DCV is maximized when the club is small

(Part 2). When δ increases the effect of congestion weakens and increasingly larger clubs
maximize the DCV (Parts 5 and 6).
When the non-congested component of the exponential congestion function is introduced
it reinforces the multiplicative effect since the aggregate benefit from a > 0 increases with
the size of the club. Therefore, the club size that maximizes the DCV weakly increases
with a (Part 1). Part 2 shows that for relatively low values of δ and a, the congestion
component is still dominant and the DCV is maximized by the smallest club. But, when the
non-congestion component increases (and δ is still low) then the DCV is maximized by the
biggest club (Part 3).49 Part 3 also makes use of the assertion in Part 1 to state that if the
DCV is maximized by the biggest club for some a then it is maximized by the biggest club
for any greater a (Part 6 uses the same assertion). If a is high enough (for δ > 1

2
its any value

of a), a club of size two never maximizes the DCV since the multiplicative effect dominates
the congestion component. Parts 4 and 5 show that for these values of δ, intermediate size
clubs can maximize the DCV. Figure 8 demonstrates Lemma B.1 for the case of na = 10.

B.1.1 The Proof of Lemma B.1

Lemma B.2. Let h(m) be an exponential congestion function. Let m > m′ and suppose
kh(m) > kh(m

′) for a given parameter a. Then kh(m) > kh(m
′) for every ā ∈ [a, 1− δ).

49In the proof we use Lemma B.3 that shows that kh(m) has three parts - increasing, decreasing and
increasing again. Therefore, to determine the club size that globally maximizes the DCV, the closest integer
to the local maxima that separates the first two parts should be compared to the right-hand side limit, na.
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Proof. For the given parameter a, kh(m)−kh(m′) > 0. Therefore, (m−1)(a+ δm−1)− (m′−
1)(a+ δm

′−1) > 0 or written differently, (m−m′)a+ (m− 1)δm−1− (m′− 1)δm
′−1 > 0. Now

suppose a increases to ā. Since m > m′, (m−m′)ā+ (m− 1)δm−1 − (m′ − 1)δm
′−1 > 0 and

therefore (m − 1)(ā + δm−1) − (m′ − 1)(ā + δm
′−1) > 0. Hence, kh(m) − kh(m′) > 0 given

ā.

Lemma B.3. Let na ≥ 4 and let h(m) be an exponential club congestion function with a > 0.
kh(m) has at most two extreme points, m̄ < ¯̄m, where m̄ is a local maximum and ¯̄m is a
local minimum.

Proof. Denote gh(m) = ηh(m)
ηh(m+1)

. To show that gh(m) is strictly increasing, it is helpful to
rewrite it as

gh(m) =

h(m+1)−h(m)
h(m)

1
m

h(m+2)−h(m+1)
h(m+1)

1
m+1

Then,

gh(m) =
m

m+ 1
× h(m+ 1)

h(m)
× h(m+ 1)− h(m)

h(m+ 2)− h(m+ 1)
=

m

m+ 1
× h(m+ 1)

h(m)
× 1

δ
.

gh(m+ 1) =
m+ 1

m+ 2
× h(m+ 2)

h(m+ 1)
× h(m+ 2)− h(m+ 1)

h(m+ 3)− h(m+ 2)
=
m+ 1

m+ 2
× h(m+ 2)

h(m+ 1)
× 1

δ
.

Note that for every integer m ≥ 1, δ ∈ (0, 1) satisfies δm−1 + δm+1 > 2δm. Therefore, a2 +
2aδm+δ2m < a2+aδm−1+aδm+1+δ2m which can be rewritten as h2(m+1) < h(m)×h(m+ 2).

Hence, ∀m ∈ {2, . . . , na−2} : h(m+2)
h(m+1)

> h(m+1)
h(m)

. Also, note that ∀m ∈ N : m+1
m+2

> m
m+1

. Taken

together, ∀m ∈ {2, . . . , na − 2} : gh(m+ 1) > gh(m), meaning gh(m) is strictly increasing.
Since ηh(m) ≤ 0 and since gh(m) is strictly increasing, there exists m? such that for every
m < m? the club-size elasticity ηh(m) is decreasing (gh(m) < 1) while for every m > m?,
ηh(m) is increasing (gh(m) > 1). Thus, generally, ηh(m) is unimodal with a single minimum
at m?.
Thus, generally, ηh(m) can be divided to four parts in the following order:

(i) ηh(m) > −1 and ηh(m) is decreasing.

(ii) ηh(m) < −1 and ηh(m) is decreasing.

(iii) ηh(m) < −1 and ηh(m) is increasing.

(iv) ηh(m) > −1 and ηh(m) is increasing.

Therefore, by Lemma 4, kh(m) has at most three parts, the first increasing (corresponding
to (i)), the second decreasing (corresponding to (ii) and (iii)) and the third increasing again
(corresponding to (iv)). Hence, for na ≥ 4, kh(m) has at most two extreme points, m̄ < ¯̄m,
where m̄ is a local maximum and ¯̄m is a local minimum.

Lemma B.4. For every na ≥ 4:
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1. δ̂(na) >
1
2
.

2. ∀δ ∈ (0, δ̂(na)) : b(δ, na) > 0.

3. arg maxδ∈(0,1) b(δ, na) = δ̂2(na).

Proof. First, note that δ̂(na) = ( 1
na−1

)
1

na−2 is the unique root of b(δ, na) that is real, positive
and smaller than one. Next,

∂δ̂(na)

∂na
=

1

na − 2
× (

1

na − 1
)

1
na−2

−1 × −1

(na − 1)2
+ (

1

na − 1
)

1
na−2 × ln

1

na − 1
× −1

(na − 2)2

Hence,

∂δ̂(na)

∂na
= − 1

na − 2
× (

1

na − 1
)

1
na−2 ×

[ 1

(na − 1)
+ ln

1

na − 1
× 1

(na − 2)

]
Since na ≥ 4, ∂δ̂(na)

∂na
> 0 if and only if 1

(na−1)
+ ln 1

na−1
× 1

(na−2)
< 0. Hence, ∂δ̂(na)

∂na
> 0 if and

only if ln 1
na−1

< −1 + 1
na−1

. Therefore, if ln 1
na−1

< −1 then ∂δ̂(na)
∂na

> 0. This means that if

na > e+ 1 then ∂δ̂(na)
∂na

> 0. Since na ≥ 4 we showed that ∂δ̂(na)
∂na

> 0.

Note that δ̂(4) = (1
3
)
1
2 ≈ 0.577. Hence δ̂(4) > 1

2
. Since ∂δ̂(na)

∂na
> 0 we get that δ̂(na) >

1
2

for
every na ≥ 4.
For every na ≥ 4, b(0, na) = 0 and b(δ̂(na), na) = 0 and there is no other δ ∈ [0, δ̂(na)] such
that b(δ, na) = 0. Since b(δ, na) is continuous and its derivative with respect to δ at δ = 0 is

positive when na ≥ 4 (∂b(δ,na)
∂δ

(0, na) = 1
na−2

> 0), we infer that ∀δ ∈ (0, δ̂(na)) : b(δ, na) > 0
when na ≥ 4.
Finally,

∂b(δ, na)

∂δ
=

1

na − 2
− (na − 1)2

na − 2
× δna−2

Thus, for a given na, the maximum of b(δ, na) is achieved at δ = ( 1
na−1

)
2

na−2 = δ̂2(na).

Proof. First, by Lemma B.2, if m > m′ and kh(m) > kh(m
′) for a given parameter a then

kh(m) > kh(m
′) for every ā ∈ [a, 1 − δ). Hence, if m? is the club size that maximizes the

DCV for a, then for every ā ∈ [a, 1− δ) the DCV is maximized by m ≥ m?. Hence, the club
size that maximizes the DCV weakly increases with a (Part 1).
Second, we show that if a ∈ [0,min{b(δ, na), δ(1 − 2δ)}) then the DCV is maximized at
m = 2. We begin by considering the case of h(m) = a + δm−1 where δ ∈ (0, 1), a ∈
(0,min{b(δ, na), δ(1 − 2δ)}) and a + δ ∈ (0, 1). By Lemma B.3, kh(m) has at most two
extreme points, m̄ < ¯̄m, where m̄ is a local maximum and ¯̄m is a local minimum. If
kh(2) > kh(3), rewritten as a < δ(1 − 2δ), then m = 2 must be the local integer maximum
of kh(m). Therefore, in these cases the global integer maximum is either at m = 2 or at
m = na. Hence, if also kh(2) > kh(na), rewritten as a < 1

na−2
δ(1− (na − 1)δna−2) = b(na, δ),

then the global integer maximum is at m = 2. Thus, if a ∈ (0,min
{
δ(1−2δ), b(na, δ)

}
) then
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kh(m) is maximized at m = 2. Note that δ(1− 2δ) > 0 if and only if δ ∈ (0, 1
2
). Hence, it is

left to be shown that if a = 0 and δ ∈ (0, 1
2
) then kh(m) is maximized at m = 2. In this case

h(m) = δm−1 and therefore the club-size elasticity is ηh(m) = m(δ−1). Thus, the congestion
function is elastic if δ < 1

2
since then ηh(m) < −1 for every club size. By Lemma 4, kh(m)

is decreasing and therefore maximized at m = 2. Hence, if a ∈ [0,min
{
δ(1− 2δ), b(na, δ)

}
)

then the DCV is maximized at m = 2 (Part 2).
Recall that δ(1− 2δ) is positive if and only if δ ∈ (0, 1

2
) and that its derivative with respect

to δ at δ = 0 is one (∂δ(1−2δ)
∂δ

(δ = 0) = 1). Also recall that when na ≥ 4 by Lemma B.4,

b(na, δ) is positive when δ ∈ (0, δ̂(na)) where δ̂(na) >
1
2

and its derivative with respect to
δ at δ = 0 is 1

na−2
< 1. Hence, these two function cross for some δ ∈ (0, 1

2
) and since both

are single peaked at this region, we denote it by δ? ( b(δ?, na) = δ?(1 − 2δ?)). Therefore,
there is a unique δ?(na) ∈ (0, 1

2
) such that ∀δ ∈ (0, δ?) : δ(1 − 2δ) > b(na, δ) and ∀δ ∈

(δ?, 1
2
) : δ(1−2δ) < b(na, δ). Consider the case where δ ∈ (0, δ?) and a ∈ (b(δ, na), δ(1−2δ)).

In this range, m = 2 must be the local integer maximum of kh(m) (since a < δ(1 − 2δ)).
However, the global maximum is m = na since a > b(δ, na). Thus, for δ ∈ (0, δ?) and
a ∈ (b(δ, na), δ(1 − 2δ)) the DCV is maximized at m = na. However, by Lemma B.2, by
increasing a the club size that maximizes the DCV cannot decrease. Since na is the maximal
size, then for δ ∈ (0, δ?) and a ∈ (b(δ, na), 1− δ) the DCV is maximized at m = na (Part 3).
Next, consider the case where δ ∈ (δ?, δ̂) and a ∈ (max{0, δ(1− 2δ)}, b(δ, na)). In this range,
m = 2 is not the local integer maximum of kh(m) (since a > δ(1− 2δ)). But, kh(2) > kh(na)
since a < b(δ, na). Therefore, the DCV is not maximized by m = 2 and it is not maximized
by m = na. Therefore, the DCV is maximized at m ∈ {3, . . . , na − 1} (Part 4).
Next, consider the case where δ ∈ [1

2
, 1− 1

na−1
] and a = 0. In this case the congestion

function reduces to h(m) = δm−1 where δ ∈ [1
2
, 1− 1

na−1
]. As a continuous function kh(m) =

(m − 1)δm−1 is single peaked and achieves its maximum at m? = 1 − 1
ln δ

. Therefore, the
highest values achieved by integers are either in

⌊
1− 1

ln δ

⌋
or
⌈
1− 1

ln δ

⌉
. Hence, when a = 0

and the club-size elasticity is indeterminate (1− 1
na−1

≥ δ ≥ 1
2
) the DCV is maximized either

at m =
⌊
1− 1

ln δ

⌋
or at m =

⌈
1− 1

ln δ

⌉
(Part 5).

Finally, consider the case where δ ∈ (1− 1
na−1

, 1) and a = 0. Then the club congestion

function becomes h(m) = δm−1 where δ ∈ (1− 1
na−1

, 1). The club-size elasticity is ηh(m) =

m(δ − 1) and the congestion function is inelastic since for δ > 1− 1
na−1

we get ηh(m) > −1
for every club size. By Lemma 4, kh(m) is increasing and therefore maximized at m = na.
In addition, by Lemma B.2, by increasing a the club size that maximizes the DCV cannot
decrease. Since na is the maximal size, then for δ ∈ (1− 1

na−1
, 1) and every legitimate value

of a the DCV is maximized at m = na (Part 6).

B.2 The Stability of the Empty Environment

B.2.1 The Result

Proposition B.1. Let En be the Empty Environment with na agents.

1. Let na ≥ 4. Suppose h(m) is the reciprocal congestion function. En is OCS if and only
if c ≥ 1.
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2. Let na ≥ 4. Suppose h(m) is an exponential congestion function. Denote b(δ, na) =
1

na−2
(δ − (na − 1)δna−1) and let δ?(na) be the unique δ ∈ (0, 1) such that b(δ, na) =

δ(1− 2δ).

(a) Suppose a ∈ [0,min{b(δ, na), δ(1− 2δ)}). En is OCS if and only if c ≥ a+ δ.

(b) Suppose that one of the following condition holds:

i. δ ∈ (0, δ?(na)) and a ∈ (b(δ, na), 1− δ).

ii. δ ∈ (1− 1
na−1

, 1).

En is OCS if and only if c ≥ (na − 1)(a+ δna−1).

(c) Suppose that δ ∈ [1
2
, 1− 1

na−1
] and a = 0. En is OCS if and only if c ≥

max{kh(
⌊
1− 1

ln δ

⌋
), kh(

⌈
1− 1

ln δ

⌉
)}.

The third part of Proposition B.1 is a direct application of Lemma B.1. Under the ex-
ponential congestion function, each club size provides its members with different payoffs.
The minimal costs for which the Empty Environment is OCS are determined by the most
attractive deviation. In the case analyzed in Proposition B.1.2a, the congestion compo-
nent is dominant and therefore the most attractive deviation is to the smallest club. If
δ ∈ (0, δ?(na)), for the same δ when the non-congestion component is high enough, the
grand club becomes the most attractive deviation.50

B.2.2 The Proof

Proof. The case of the reciprocal club congestion function is based on the DCV being a
constant function that equals to 1. The case of the exponential club congestion function is
based on Lemma B.1. The first case results from Part 2 and from kh(2) = a+ δ. The second
case is an implication of parts 3 and 6 (recall that kh(na) = (na − 1)(a + δna−1)). The final
case results from Part 5.

C Existence of OCS m-Star Environments

C.1 One Analytic Result

Proposition 5 characterizes the membership fees for which an m-Star Environment is OCS.
However, it does not provide a condition for the existence of such membership fees. Techni-
cally, for given na and m, Proposition 5 specifies upper and lower bounds on the membership
fees for which an m-Star Environment is OCS but it does not guarantee that the upper bound
is indeed greater than the lower bound. Claim C.1 identifies one case in which existence is
guaranteed.

50One important implication of this discontinuity is on dynamic models where agents join the environment
sequentially. Consider a dynamic model where the initial environment is the Empty environment, the clubs’
rules follow the OCS rules and the membership fees are marginally high. Then, a tiny difference in the
parameters of the congestion function or in the population size may lead to huge differences in the final
environment’s club composition.
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Claim C.1. Let na > m ≥ 2 and let h(·) be a club congestion function. Denote γ ≡ na−1
m−1

and lh = min{k ∈ Z|h(k) ≤ h2(m)}. Suppose γ < m. If

Jh(m) ≥ max{max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m, na), max
min{lh,na}>k>m

FNLh(k,m, na)}

then a range of membership fees for which an m-Star Environment is OCS exists.

Proof. By Proposition 5, Jh(m) = (m−1)[h(m+1)−h2(m)]. Since club congestion functions
are assumed to be non-increasing, we get h(m) ≥ h(m+ 1)− h2(m). Therefore, (m −
1)h(m) ≥ (m− 1)[h(m+ 1)− h2(m)]. Hence, Kh(m) ≥ Jh(m). If

Jh(m) ≥ max{max
γ≥k≥2

FNSh(k,m), max
m≥k>γ

FNIh(k,m, na), max
min{lh,na}>k>m

FNLh(k,m, na)}

then by the second part of Proposition 5 a range of membership fees for which the m-Star
Environment is OCS is guaranteed.

Claim C.1 provides a sufficient condition for the existence of membership fees for which
an m-Star Environment is OCS in cases where the number of populated clubs is smaller
than the size of the clubs (e.g. a 3-Star Environment with 5 agents). This condition is not
vacant. Consider, for example, the case where na = 13 and h(m) = 0.73 + 0.21m−1. We are
guaranteed that a range of membership fees for which any 7-Star Environment is OCS exists
since it can be shown that for a peripheral agent joining the other club is more attractive
than any deviation to a new club.

C.2 Numerical Analysis

As noted above, Proposition 5 does not provide a condition for the existence of membership
fees for which a given m-Star Environment is OCS. Figure 9 demonstrates the application of
Proposition 5 to the question of existence of such membership fees in the case of 13 agents
and an exponential club congestion function. In each of the six sub-figures, the shaded area
presents the pairs of a (horizontal axis) and δ (vertical axis) for which the corresponding
m-Star Environment is OCS for some membership fees (since a + δ < 1 only the lower left
triangle is relevant). In addition, in each sub-figure we indicate, in terms of the size of the
new club, the deviation that determines the envelop of the area where no membership fees
exists for which the corresponding m-Star Environment is OCS (restrictive intervals of the
deviation are depicted as continuous while non-restrictive intervals are dotted).51

The upper leftmost sub-figure (the 2-Star Environment) summarizes Claim 4.4. The second
part of Claim 5 could be recognized by the intersection of the shaded area with the Y-axis
(a = 0) in the upper middle sub-figure (the 3-Star Environment) and the first part of Claim

51For each sub-figure (excluding the one for the Grand Club environment) we first calculated for each
k ∈ {2, 3, ...,min{lh, 13}} and for 1000 values of δ ∈ (0, 1) the set of as such that the upper bound is greater
than the corresponding lower bound expression (using FNSh, FNIh or FNLh). Claim C.1 guarantees
that the calculation of Jh(m) is unnecessary. Next, we calculated the intersection of all the sets derived
in the first stage and presented it by the shaded area. The curves were derived similarly to the first stage
procedure, except that the upper bound was set to be equal to the lower bound expression. For the Grand
Club environment we repeated the same procedure using the lower bound specified in Proposition 4.
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Figure 9: The existence of membership fees for which m-star environments are OCS when the
club congestion function is exponential and na = 13.

3 could be recognized by the intersection of the non-shaded area with the Y-axis in the lower
rightmost sub-figure (the Grand Club Environment).
The main insight provided by Figure 9 is that holding δ constant, the effect of a on stability
is non-monotonic. This reflects the complicated lower bound conditions in Proposition 5,
where the non-differentiable points denote changes in the effective lower bound. The cases
of the 3-Star, 4-Star and 5-Star environments demonstrate the intuition very nicely. When
the non-congested parameter is low, the effective bound is induced by a deviation of a
small coalition since the effect of congestion is dominant and therefore should be minimized.
However, when the non-congested parameter is high, the effective bound is a deviation of
a large coalition, since congestion is relatively less important than the multiplicative effect
introduced by a. Since the multiplicative effect strengthens with the size of the club, the
most attractive deviation is to a club that includes all peripheral agents. Note that the first
consideration is missing from the sub-figure of the 2-Star Environment since agents in this
environment suffer no congestion. Similarly, the second consideration is missing from the
sub-figure of the Grand Club Environment since the multiplicative effect is maximized (the
reasoning is similar for the 7-Star Environment).
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